Зточки к до площини a проведено дві рівні похилі мк і кр, кут між якими дорівнює 60°. знайдіть кут між похилою мк та її проекцією на площину а, якщо проекції похилих утворюють кут 120°
Так как наклонные МК и КР равны, а угол между ними равен 60°, треугольник МКР - равносторонний и МР = МК=КР.
Пусть МР = р. Опустим перпендикуляр МО на плоскость а.
Тогда треугольник МОР равносторонний (так как проекции равных наклонных равны), МО=ОР. Высота этого треугольника ОН является и медианой, и биссектрисой (свойство равнобедренного треугольника). Тогда в прямоугольном треугольнике НОР катет НР равен р/2, а гипотенуза ОР = 2·ОН, так как катет ОН лежит против угла ОРН = 30° (по сумме острых углов прямоугольного треугольника).
По Пифагору МО²-ОН² = HР² =>
4x² -x² = p²/4 => x = р/√12 => MO = 2x = р√3/3.
В прямоугольном треугольнике ОКМ угол КМО - искомый угол.
∠КМО = arccos(√3/3) ≈ 54,8°.
Объяснение:
Так как наклонные МК и КР равны, а угол между ними равен 60°, треугольник МКР - равносторонний и МР = МК=КР.
Пусть МР = р. Опустим перпендикуляр МО на плоскость а.
Тогда треугольник МОР равносторонний (так как проекции равных наклонных равны), МО=ОР. Высота этого треугольника ОН является и медианой, и биссектрисой (свойство равнобедренного треугольника). Тогда в прямоугольном треугольнике НОР катет НР равен р/2, а гипотенуза ОР = 2·ОН, так как катет ОН лежит против угла ОРН = 30° (по сумме острых углов прямоугольного треугольника).
По Пифагору МО²-ОН² = HР² =>
4x² -x² = p²/4 => x = р/√12 => MO = 2x = р√3/3.
В прямоугольном треугольнике ОКМ угол КМО - искомый угол.
Cos(∠KMO) = ОМ/КМ = (р√3/3)/р = √3/3.
∠КМО = arccos(√3/3) ≈ 54,8°.