Давай попробуем рассуждать логически. Если бы сад состоял из двух деревьев, то было бы два варианта садов: 100+99 и 100+101. Если бы досадили третье дерево, то каждый из предыдущих садов удвоил бы число вариантов: первый 100+99+98 и 100+99+100, и так же второй 100+101+100 и 100+101+102. Подмечаем закономерность: каждое добавляемое дерево удваивает количество вариантов. А сад из одного дерева имеет лишь один вариант.
Приведём все степени к основанию 2
2^3702-2^468+2^1620-108
-108 можно представить как -128 + 16 + 4
2^3702-2^468+2^1620-2^7 + 2^4 + 2^2
Теперь выстраиваем степени в порядке убывания:
2^3702+2^1620-2^468-2^7 + 2^4 + 2^2
В выражении два вычитания подряд, избавимся от этого, заменив -2^468 на -2^469 + 2^468
2^3702+2^1620 -2^469+2^468-2^7 + 2^4 + 2^2
2^3702 - 1 единица
2^4 - 1 единица
2^2 - 1 единица
Количество единиц в вычитаниях будет равно разнице степеней. Например 1000000-100=1111
2^1620 -2^469 - количеств единиц 1620-469 = 1151
2^468-2^7 - количество единиц 468-7 = 461
Общее количество единиц равно 3+1151+461 = 1615
Если бы сад состоял из двух деревьев, то было бы два варианта садов: 100+99 и 100+101. Если бы досадили третье дерево, то каждый из предыдущих садов удвоил бы число вариантов: первый 100+99+98 и 100+99+100, и так же второй 100+101+100 и 100+101+102. Подмечаем закономерность: каждое добавляемое дерево удваивает количество вариантов. А сад из одного дерева имеет лишь один вариант.
Поэтому ответ: 1 * 2 * 2 * 2 * ... (десять двоек умножаются) = 2^10 = 1024 варианта садов.
Думаю что так, если не напутал. Но ты лучше проверь за мной.