Циклические структуры паскаля. Введите два натуральных числа и вопрос о характере выводимых чисел. Выведите все чётные или нечётные числа через запятую между ними, используя все типы циклов.
В СССР доступные бытовые магнитофоны распространились примерно со второй половины 1950-х — начала 1960-х годов. В это время возникло особое социальное явление — магнитофонная культура или «магнитиздат». Легкость копирования магнитных записей позволила почти неограниченно распространять произведения, не одобрявшиеся официальной идеологией, но популярные в народе: песни бардов и первых полуподпольных рок-групп, западную популярную музыку, неофициальные выступления писателей-сатириков, лекции по уфологии, передачи «вражеских голосов» и т. п.[30][31] Магнитофоны быстро вытеснили с рынка кустарную грамзапись — грампластинки, записанные на использованной рентгенопленке («музыка на ребрах»).
Трехзначное число в системе счисления по основанию p может быть записано, как Разница между максимальным и минимальным трехзначными числами должна превышать десятичное число 200 (пока не будем учитывать дополнительное ограничение на несимметричность), т.е.
В целых числах получаем условие p≥6, т.е. основание системы счисления не может быть меньше 6. Найдем, сколько трехзначных чисел можно получить в системе счисления с основанием 6: Симметричными будут числа вида 5х5, 4х4, 3х3, 2х2, 1х1, где х - любая из цифр по основанию 6. Итого получается пять групп, в каждой из которых шесть чисел, т.е. всего трехзначных симметричных чисел может быть 30. Следовательно, в системе счисления по основанию 6 можно записать 215-30=185 трехзначных несимметричных чисел, что меньше ограничения 200. Проверим систему счисления по основанию 7: Симметричными будут числа вида 6х6, 5х5, 4х4, 3х3, 2х2, 1х1, где х - любая из цифр по основанию 7. Итого получается шесть групп, в каждой из которых семь чисел, т.е. всего трехзначных симметричных чисел может быть 42. Следовательно, в системе счисления по основанию 7 можно записать 342-42=300 трехзначных несимметричных чисел, что превышает ограничение 200.
Разница между максимальным и минимальным трехзначными числами должна превышать десятичное число 200 (пока не будем учитывать дополнительное ограничение на несимметричность), т.е.
В целых числах получаем условие p≥6, т.е. основание системы счисления не может быть меньше 6.
Найдем, сколько трехзначных чисел можно получить в системе счисления с основанием 6:
Симметричными будут числа вида 5х5, 4х4, 3х3, 2х2, 1х1, где х - любая из цифр по основанию 6. Итого получается пять групп, в каждой из которых шесть чисел, т.е. всего трехзначных симметричных чисел может быть 30. Следовательно, в системе счисления по основанию 6 можно записать 215-30=185 трехзначных несимметричных чисел, что меньше ограничения 200.
Проверим систему счисления по основанию 7:
Симметричными будут числа вида 6х6, 5х5, 4х4, 3х3, 2х2, 1х1, где х - любая из цифр по основанию 7. Итого получается шесть групп, в каждой из которых семь чисел, т.е. всего трехзначных симметричных чисел может быть 42. Следовательно, в системе счисления по основанию 7 можно записать 342-42=300 трехзначных несимметричных чисел, что превышает ограничение 200.
ответ: 7