Много ! в выражении (f+o+x+e): (f⋅r⋅d⋅d)(f+o+x+e): (f⋅r⋅d⋅d) можно заменять буквы цифрами (одинаковые буквы - одинаковыми цифрами, а разные - разными). какое самое большое целое число можно получить при этом?
Наибольшее возможное значение выражения (F+O+X+E)*(F*R*D*D) = 236196. Прилагаю небольшой скрипт на Python. Простенькая задачка на корректную организацию перебора с использованием вложенных циклов:
max_num = 0 for f in xrange(10): for o in xrange(10): for x in xrange(10): for e in xrange(10): for r in xrange(10): for d in xrange(10): b = f*r*d*d if b == 0: continue num = (f + o + x + e) * b if num > max_num: max_num = num
print "Maximum value of (F+O+X+E)*(F*R*D*D) is: %i" % max_num
Решение можно получить гораздо проще, если догадаться, что наибольшее значение выражения достигается, когда сумма F+O+X+E и произведение F*R*D*D являются максимальными. Это одновременно происходит, когда все цифры равны 9: (9+9+9+9)*9*9*9*9 = 236196
max_num = 0
for f in xrange(10):
for o in xrange(10):
for x in xrange(10):
for e in xrange(10):
for r in xrange(10):
for d in xrange(10):
b = f*r*d*d
if b == 0:
continue
num = (f + o + x + e) * b
if num > max_num:
max_num = num
print "Maximum value of (F+O+X+E)*(F*R*D*D) is: %i" % max_num
Решение можно получить гораздо проще, если догадаться, что наибольшее значение выражения достигается, когда сумма F+O+X+E и произведение F*R*D*D являются максимальными. Это одновременно происходит, когда все цифры равны 9: (9+9+9+9)*9*9*9*9 = 236196