На числовой прямой даны отрезки A = [80; 90], B = [30; 50] и C = [10; N] и функция F(x) = (Ø (x Î A) ® (x Î B) ) Ù (Ø (x Î C) ® (x Î A) ) При каком наименьшем числе N функция F(x) истинна более чем для 25 целых чисел x?
Выражение ¬(P ~ Q) истинно только тогда, когда x ∈ [5; 14) и x ∈ (23; 30] (см. рисунок). В таком случае, для того, чтобы выражение было истинно при любом x, A должно лежать либо в промежутке [5; 14), либо (23; 30]. Следовательно, наибольшая возможная длина промежутка равна 14 − 5 = 9.
Объяснение:
сори пацан я не знаю
Объяснение:Решение.
Знаком ~ обозначается операция эквивалентности (результат X ~ Y — истина, если значения X и Y совпадают).
Введем обозначения:
(x ∈ P) ≡ P; (x ∈ Q) ≡ Q; (x ∈ A) ≡ A.
Тогда, применив преобразование импликации, получаем:
¬(P ~ Q) ∨ ¬A ⇔ ¬(P ~ Q) ∨ ¬A = 1.
Выражение ¬(P ~ Q) истинно только тогда, когда x ∈ [5; 14) и x ∈ (23; 30] (см. рисунок). В таком случае, для того, чтобы выражение было истинно при любом x, A должно лежать либо в промежутке [5; 14), либо (23; 30]. Следовательно, наибольшая возможная длина промежутка равна 14 − 5 = 9.
ответ: 9.
ответ правельный чесное слово нажми