Если весь текст состоит из К символов, то приалфавитном подходе размер содержащийся в ней информации I определяется по формуле: I=K*x, где х—информационный вес одного символа в используемом алфавите.
РЕШЕНИЕ: Всего у нас 10 символов: 0,1,2,3,4,5,6,7,8,9. I=K*x, 10*8=80 бит 80*80=6400 бит ответ:6400 бит.
2.Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда кол-во информации x, заключенное в этом сообщении, и число событий N связаны формулой: 2^х=N
1. Выразим выражения по правилам языка Pascal:
a) 5 * 2 - 4
Решение:
Умножение имеет более высокий приоритет, чем вычитание. Поэтому, сначала выполним вычисление умножения: 5 * 2 = 10.
Затем, выполним вычитание: 10 - 4 = 6.
Ответ: 6.
б) 7 * х + 2
Решение:
Умножение имеет более высокий приоритет, чем сложение. Поэтому, сначала выполним вычисление умножения: 7 * х = 7х.
Затем, выполним сложение: 7х + 2.
Ответ: 7х + 2.
в) 8 * х - 3 * (х + у)
Решение:
Выполним умножение: 8 * х = 8х и 3 * (х + у) = 3х + 3у.
Затем, выполним вычитание: 8х - (3х + 3у).
Для выполнения операции в скобках, умножение 3 на каждый из элементов внутри скобок:
8х - 3х - 3у = 5х - 3у.
Ответ: 5х - 3у.
г) v^2 * х * у^2 * х * у
Решение:
По правилам алгебры, умножение можно проводить в любом порядке.
Выполним умножение: v^2 * х = v^2х, у^2 * х = у^2х, v^2х * у^2х = (vх * у)^2х.
Ответ: (vх * у)^2х.
2. Переведем запись с языка Pascal в нормальную форму:
f = (3 * x + 4 * y)/(2 * sqr(к) - 4 * t / y)
Решение:
Нормализация выражения подразумевает разделение на более простые составляющие.
Заменим sqr(к) на к^2, чтобы выразить возведение в квадрат в общепринятой форме:
f = (3 * x + 4 * y)/(2 * к^2 - 4 * t / y)
Затем, выполним умножение и деление в числителе и знаменателе:
f = (3 * x + 4 * y)/(2к^2 - (4 * t) / y)
Ответ: f = (3 * x + 4 * y)/(2к^2 - 4t/y).
Таким образом, мы записали выражения по правилам языка Pascal и перевели запись с языка Pascal в нормальную форму.
1.Я неуверен на 100% в 1 задаче.
Если весь текст состоит из К символов, то приалфавитном подходе размер содержащийся в ней информации I определяется по формуле:
I=K*x,
где х—информационный вес одного символа в используемом алфавите.
РЕШЕНИЕ:
Всего у нас 10 символов: 0,1,2,3,4,5,6,7,8,9.
I=K*x, 10*8=80 бит
80*80=6400 бит
ответ:6400 бит.
2.Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда кол-во информации x, заключенное в этом сообщении, и число событий N связаны формулой:
2^х=N
РЕШЕНИЕ:
2^x=8
2^3=8
ответ: 3 бит.
a) 5 * 2 - 4
Решение:
Умножение имеет более высокий приоритет, чем вычитание. Поэтому, сначала выполним вычисление умножения: 5 * 2 = 10.
Затем, выполним вычитание: 10 - 4 = 6.
Ответ: 6.
б) 7 * х + 2
Решение:
Умножение имеет более высокий приоритет, чем сложение. Поэтому, сначала выполним вычисление умножения: 7 * х = 7х.
Затем, выполним сложение: 7х + 2.
Ответ: 7х + 2.
в) 8 * х - 3 * (х + у)
Решение:
Выполним умножение: 8 * х = 8х и 3 * (х + у) = 3х + 3у.
Затем, выполним вычитание: 8х - (3х + 3у).
Для выполнения операции в скобках, умножение 3 на каждый из элементов внутри скобок:
8х - 3х - 3у = 5х - 3у.
Ответ: 5х - 3у.
г) v^2 * х * у^2 * х * у
Решение:
По правилам алгебры, умножение можно проводить в любом порядке.
Выполним умножение: v^2 * х = v^2х, у^2 * х = у^2х, v^2х * у^2х = (vх * у)^2х.
Ответ: (vх * у)^2х.
2. Переведем запись с языка Pascal в нормальную форму:
f = (3 * x + 4 * y)/(2 * sqr(к) - 4 * t / y)
Решение:
Нормализация выражения подразумевает разделение на более простые составляющие.
Заменим sqr(к) на к^2, чтобы выразить возведение в квадрат в общепринятой форме:
f = (3 * x + 4 * y)/(2 * к^2 - 4 * t / y)
Затем, выполним умножение и деление в числителе и знаменателе:
f = (3 * x + 4 * y)/(2к^2 - (4 * t) / y)
Ответ: f = (3 * x + 4 * y)/(2к^2 - 4t/y).
Таким образом, мы записали выражения по правилам языка Pascal и перевели запись с языка Pascal в нормальную форму.