Пусть U = ¬(x ∈ {1,2,4,8,16}), V = ¬(x ∈ {3,4,9,16}), W = (x ∈ A). Тогда выражение имеет вид U ∧ V ∨ W = (U ∧ V) ∨ W
U истинно для всех x, кроме 1, 2, 4, 8 и 16.
V истинно для всех x, кроме 3, 4, 9 и 16.
Когда оба U, V истинны, тогда (и только тогда) истинно U ∧ V, а значит и всё выражение, так как 1 ∨ W = 1 при любом W.
U и V одновременно истинны для всех x, кроме 1, 2, 3, 4, 8, 9 и 16. Чтобы выражение для таких x было истинно, необходимо, чтобы было истинно W, то есть x принадлежало A.
Поэтому A обязательно принадлежат 1, 2, 3, 4, 8, 9 и 16 - 7 чисел. Возможно, A содержит и что-то ещё, но в вопросе интересуются множеством наименьшего размера, так что ответ 7.
ответ:
n, m, t = map(int,
x = list(map(int,
def build(name):
if name in built:
pass
elif b[a.index(name)] == ["0"]:
built.append(name)
else:
for i in b[a.index(: ]:
if i not in built:
build(i)
built.append(name)
a = []
b = []
built = []
for i in range(0, n):
a.append(
b.append(
for i in range(0, b.:
built.append(a[b.
a.pop(b.
b.pop(b.
[build(str(o)) for o in x]
print(len(built))
объяснение:
7
Объяснение:
Пусть U = ¬(x ∈ {1,2,4,8,16}), V = ¬(x ∈ {3,4,9,16}), W = (x ∈ A). Тогда выражение имеет вид U ∧ V ∨ W = (U ∧ V) ∨ W
U истинно для всех x, кроме 1, 2, 4, 8 и 16.
V истинно для всех x, кроме 3, 4, 9 и 16.
Когда оба U, V истинны, тогда (и только тогда) истинно U ∧ V, а значит и всё выражение, так как 1 ∨ W = 1 при любом W.
U и V одновременно истинны для всех x, кроме 1, 2, 3, 4, 8, 9 и 16. Чтобы выражение для таких x было истинно, необходимо, чтобы было истинно W, то есть x принадлежало A.
Поэтому A обязательно принадлежат 1, 2, 3, 4, 8, 9 и 16 - 7 чисел. Возможно, A содержит и что-то ещё, но в вопросе интересуются множеством наименьшего размера, так что ответ 7.