Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при Кода Хэмминга. Нам необходимо представить его в бинарном виде.На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 битбит. распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом)Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
Чтобы квадрат вписался в круг, его диагональ должна быть равна диаметру круга. Если трактовать "уместиться" как "пролезть", то диагональ должна быть меньше диаметра.. Формулы площадей квадрата S₁ и круга S₂ известны, что легко позволяет нам найти нужное условие.
Если нужно, чтобы случай, когда квадрат вписан в круг тоже учитывался, строгое неравенство следует заменить нестрогим.
// PascalABC.NET 3.0, сборка 1160 от 05.02.2016 begin var s1:=ReadReal('Площадь квадрата'); var s2:=ReadReal('Площадь круга'); if pi*s1<2*s2 then Writeln('Квадрат умещается в круге') else Writeln('Квадрат не умещается в круге') end.
Тестовое решение: Площадь квадрата 24.6 Площадь круга 28.4 Квадрат не умещается в круге
Объяснение:
Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при Кода Хэмминга. Нам необходимо представить его в бинарном виде.На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 битбит. распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом)Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
Формулы площадей квадрата S₁ и круга S₂ известны, что легко позволяет нам найти нужное условие.
Если нужно, чтобы случай, когда квадрат вписан в круг тоже учитывался, строгое неравенство следует заменить нестрогим.
// PascalABC.NET 3.0, сборка 1160 от 05.02.2016
begin
var s1:=ReadReal('Площадь квадрата');
var s2:=ReadReal('Площадь круга');
if pi*s1<2*s2 then Writeln('Квадрат умещается в круге')
else Writeln('Квадрат не умещается в круге')
end.
Тестовое решение:
Площадь квадрата 24.6
Площадь круга 28.4
Квадрат не умещается в круге