В 1988 году вирус заразил по сети 60 тыс. компьютеров, не давая им нормально работать. Ущерб от червя Морриса был оценён примерно в $96.5 млн.
Создатель вируса Роберт Моррис хорошо законспирировал код программы, и вряд ли кто мог доказать его причастность. Однако его отец, компьютерный эксперт Агентства национальной безопасности, посчитал, что сыну лучше во всем сознаться.
На суде Роберту Моррису грозило до пяти лет лишения свободы и штраф в размере $250 тыс, однако, принимая во внимание смягчающие обстоятельства, суд приговорил его к трем годам условно, $10 тыс штрафа и 400 часам общественных работ.
Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными .
Варианты решений
Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.
1: матричный метод
Самый распространенный решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:
14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21
Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.
Матрица в Microsoft Excel
Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.
Вектор B в Microsoft Excel
Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:
=МОБР(массив)
Аргумент «Массив» — это, собственно, адрес исходной таблицы.
Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.
Переход в Мастер функций в Microsoft Excel
Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».
Переход к аргументам функции МОБР в Microsoft Excel
Morris
В 1988 году вирус заразил по сети 60 тыс. компьютеров, не давая им нормально работать. Ущерб от червя Морриса был оценён примерно в $96.5 млн.
Создатель вируса Роберт Моррис хорошо законспирировал код программы, и вряд ли кто мог доказать его причастность. Однако его отец, компьютерный эксперт Агентства национальной безопасности, посчитал, что сыну лучше во всем сознаться.
На суде Роберту Моррису грозило до пяти лет лишения свободы и штраф в размере $250 тыс, однако, принимая во внимание смягчающие обстоятельства, суд приговорил его к трем годам условно, $10 тыс штрафа и 400 часам общественных работ.
Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными .
Варианты решений
Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.
1: матричный метод
Самый распространенный решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:
14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21
Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.
Матрица в Microsoft Excel
Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.
Вектор B в Microsoft Excel
Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:
=МОБР(массив)
Аргумент «Массив» — это, собственно, адрес исходной таблицы.
Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.
Переход в Мастер функций в Microsoft Excel
Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».
Переход к аргументам функции МОБР в Microsoft Excel