Uses GraphABC; procedure Draw(x, y, l, u : Real; t : Integer);
procedure Draw2(Var x, y: Real; l, u : Real; t : Integer); begin Draw(x, y, l, u, t); x := x + l*cos(u); y := y - l*sin(u);end; begin if t > 0 then beginl := l/3;Draw2(x, y, l, u, t-1);Draw2(x, y, l, u+pi/3, t-1); Draw2(x, y, l, u-pi/3, t-1);Draw2(x, y, l, u, t-1);end else Line(Round(x), Round(y), Round(x+cos(u)*l), Round(y-sin(u)*l))end; begin SetWindowSize(425,500); SetWindowCaption('Фракталы: Снежинка Коха'); Draw(10, 354, 400, pi/3, 4);Draw(410, 354, 400, pi, 4); Draw(210, 8, 400, -pi/3, 4);end.
1. На ленте машины Тьюринга содержится последовательностью символов “+”. Напишите программу для машины Тьюринга, которая каждый второй символ “+” заменит на “–”. Замена начинается с правого конца последовательности. Автомат в состоянии q1 обозревает один из символов указанной последовательности. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
2. Дано число n в восьмеричной системе счисления. Разработать машину Тьюринга, которая увеличивала бы заданное число n на 1. Автомат в состоянии q1 обозревает некую цифру входного слова. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
3. Дана десятичная запись натурального числа n > 1. Разработать машину Тьюринга, которая уменьшала бы заданное число n на 1. Автомат в состоянии q1 обозревает правую цифру числа. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
4. Дано натуральное число n > 1. Разработать машину Тьюринга, которая уменьшала бы заданное число n на 1, при этом в выходном слове старшая цифра не должна быть 0. Например, если входным словом было “100”, то выходным словом должно быть “99”, а не “099”. Автомат в состоянии q1 обозревает правую цифру числа. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
5. Дан массив из открывающих и закрывающих скобок. Построить машину Тьюринга, которая удаляла бы пары взаимных скобок, т.е. расположенных подряд “( )”.
Например, дано “) ( ( ) ( ( )”, надо получить “) . . . ( ( ”.
Автомат в состоянии q1 обозревает крайний левый символ строки. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
6. Дана строка из букв “a” и “b”. Разработать машину Тьюринга, которая переместит все буквы “a” в левую, а буквы “b” — в правую части строки. Автомат в состоянии q1 обозревает крайний левый символ строки. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
procedure Draw(x, y, l, u : Real; t : Integer);
procedure Draw2(Var x, y: Real; l, u : Real; t : Integer);
begin
Draw(x, y, l, u, t);
x := x + l*cos(u);
y := y - l*sin(u);end;
begin
if t > 0 then
beginl := l/3;Draw2(x, y, l, u, t-1);Draw2(x, y, l, u+pi/3, t-1);
Draw2(x, y, l, u-pi/3, t-1);Draw2(x, y, l, u, t-1);end
else
Line(Round(x), Round(y), Round(x+cos(u)*l), Round(y-sin(u)*l))end;
begin
SetWindowSize(425,500);
SetWindowCaption('Фракталы: Снежинка Коха');
Draw(10, 354, 400, pi/3, 4);Draw(410, 354, 400, pi, 4);
Draw(210, 8, 400, -pi/3, 4);end.
1. На ленте машины Тьюринга содержится последовательностью символов “+”. Напишите программу для машины Тьюринга, которая каждый второй символ “+” заменит на “–”. Замена начинается с правого конца последовательности. Автомат в состоянии q1 обозревает один из символов указанной последовательности. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
2. Дано число n в восьмеричной системе счисления. Разработать машину Тьюринга, которая увеличивала бы заданное число n на 1. Автомат в состоянии q1 обозревает некую цифру входного слова. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
3. Дана десятичная запись натурального числа n > 1. Разработать машину Тьюринга, которая уменьшала бы заданное число n на 1. Автомат в состоянии q1 обозревает правую цифру числа. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
4. Дано натуральное число n > 1. Разработать машину Тьюринга, которая уменьшала бы заданное число n на 1, при этом в выходном слове старшая цифра не должна быть 0. Например, если входным словом было “100”, то выходным словом должно быть “99”, а не “099”. Автомат в состоянии q1 обозревает правую цифру числа. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
5. Дан массив из открывающих и закрывающих скобок. Построить машину Тьюринга, которая удаляла бы пары взаимных скобок, т.е. расположенных подряд “( )”.
Например, дано “) ( ( ) ( ( )”, надо получить “) . . . ( ( ”.
Автомат в состоянии q1 обозревает крайний левый символ строки. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.
6. Дана строка из букв “a” и “b”. Разработать машину Тьюринга, которая переместит все буквы “a” в левую, а буквы “b” — в правую части строки. Автомат в состоянии q1 обозревает крайний левый символ строки. Кроме самой программы-таблицы, описать словами, что выполняется машиной в каждом состоянии.