У Асель есть А тенге. Стоимость одного ластика равна К, стоимость одной ручки равна С. Сколько ластиков или ручек может купить Асель на все свои деньги. Можно на языке програмирования Питон. Мне надо и именно на питоне
Часто выбирают равномерное разбиение, в котором все точки расположены на одинаковом расстоянии h = (b - a) / n, при этом .
Реализация (PascalABC.NET): функция int_lr принимает подинтегральную функцию, левую и правую границы отрезка интегрирования и количество отрезков в разбиения. В основной программе интеграл вычисляется для n = 1, 2, 4, 8, ..., 1024, выводится n, результат численного интегрирования и разность между полученным значением и точным значением интеграла. Можно заметить, что при увеличении n в 2 раза ошибка уменьшается примерно в 2 раза.
function int_lr(f: real-> real; l, r: real; n: integer): real;
begin
var h := (r - l) / n;
var s := 0.To(n - 1).Select(i -> f(l + i * h)).Sum;
result := s * h;
end;
const exact = 1250 / 3;
begin
var n := 1;
for var _ := 1 to 11 do
begin
var int := int_lr(x -> (x - 5) ** 2 * (10 - x), 0, 10, n);
int main() { int N; char c; printf("Исходное направление робота (n,w,s,e): "); scanf("%c",&c); printf("Команда (0,1,-1,2,-2): "); scanf("%d",&N); while (N != 0){ switch (N) { case 1 : break; case -1: switch (c) { case 'n' : c = 's'; break; case 'w' : c = 'e'; break; case 's' : c = 'n'; break; case 'e' : c = 'w'; break; }; break; case 2 : switch (c) { case 'n' : c = 'e'; break; case 'w' : c = 'n'; break; case 's' : c = 'w'; break; case 'e' : c = 's'; break; }; break; case -2: switch (c) { case 'n' : c = 'w'; break; case 'w' : c = 's'; break; case 's' : c = 'e'; break; case 'e' : c = 'n'; break; }; break; } printf("c = %c\n", c); printf("Команда (0,1,-1,2,-2): "); scanf("%d",&N); } return 0; }
Пример: Исходное направление робота (n,w,s,e): n Команда (0,1,-1,2,-2): 2 c = e Команда (0,1,-1,2,-2): 1 c = e Команда (0,1,-1,2,-2): -2 c = n Команда (0,1,-1,2,-2): -1 c = s Команда (0,1,-1,2,-2): 0
Пусть - какое-то разбиение отрезка [a, b]. Формулой левых прямоугольников называется приближение
Часто выбирают равномерное разбиение, в котором все точки расположены на одинаковом расстоянии h = (b - a) / n, при этом .
Реализация (PascalABC.NET): функция int_lr принимает подинтегральную функцию, левую и правую границы отрезка интегрирования и количество отрезков в разбиения. В основной программе интеграл вычисляется для n = 1, 2, 4, 8, ..., 1024, выводится n, результат численного интегрирования и разность между полученным значением и точным значением интеграла. Можно заметить, что при увеличении n в 2 раза ошибка уменьшается примерно в 2 раза.
function int_lr(f: real-> real; l, r: real; n: integer): real;
begin
var h := (r - l) / n;
var s := 0.To(n - 1).Select(i -> f(l + i * h)).Sum;
result := s * h;
end;
const exact = 1250 / 3;
begin
var n := 1;
for var _ := 1 to 11 do
begin
var int := int_lr(x -> (x - 5) ** 2 * (10 - x), 0, 10, n);
writeln(n:4, int:9:3, abs(int - exact):9:3);
n := 2 * n;
end;
end.
Вывод программы:
1 2500.000 2083.333
2 1250.000 833.333
4 781.250 364.583
8 585.938 169.271
16 498.047 81.380
32 456.543 39.876
64 436.401 19.735
128 426.483 9.816
256 421.562 4.896
512 419.111 2.445
1024 417.888 1.221
int main()
{
int N;
char c;
printf("Исходное направление робота (n,w,s,e): ");
scanf("%c",&c);
printf("Команда (0,1,-1,2,-2): ");
scanf("%d",&N);
while (N != 0){
switch (N) {
case 1 : break;
case -1:
switch (c) {
case 'n' : c = 's'; break;
case 'w' : c = 'e'; break;
case 's' : c = 'n'; break;
case 'e' : c = 'w'; break;
};
break;
case 2 :
switch (c) {
case 'n' : c = 'e'; break;
case 'w' : c = 'n'; break;
case 's' : c = 'w'; break;
case 'e' : c = 's'; break;
};
break;
case -2:
switch (c) {
case 'n' : c = 'w'; break;
case 'w' : c = 's'; break;
case 's' : c = 'e'; break;
case 'e' : c = 'n'; break;
};
break;
}
printf("c = %c\n", c);
printf("Команда (0,1,-1,2,-2): ");
scanf("%d",&N);
}
return 0;
}
Пример:
Исходное направление робота (n,w,s,e): n
Команда (0,1,-1,2,-2): 2
c = e
Команда (0,1,-1,2,-2): 1
c = e
Команда (0,1,-1,2,-2): -2
c = n
Команда (0,1,-1,2,-2): -1
c = s
Команда (0,1,-1,2,-2): 0