Вопросы кс 1. адресация в ip сетях. 2. алгоритм динамического назначения адресов в dhcp. 3. беспроводная передача данных. 4. интеллектуальные функции коммутаторов. 5. использование масок при ip-адресации. 6. коммутация пакетов и каналов. 7. коммутируемые локальные сети. 8. компоненты сети 9. маршрутизация с использованием масок. 10. масштабируемая система маршрутизации. 11. методы обеспечения качества обслуживания. 12. направление модернизации стека тсрлр. 13. обнаружение и коррекция ошибок сети. 14. основы проектирования структурированных кабельных систем (скс) 15. особые адреса. 16. отображение ip-адресов на локальные адреса. 17. построение магистральных линий связи 18. примеры заполнения таблиц маршрутизации. 19. примеры сетей и сетевые характеристики. 20. протокол ipу4. 21. протокол ipv6. 22. протокол rip 23. протоколь ospf 24. протоколы маршрутизации. 25. сетевые топологии. 26. система dns. 27. снижение нагрузки на маршрутизаторы. 28. совместное использование ресурсов компьютеров 29. стандартизация сетей. 30. стандартные стеки коммуникационных протоколов. 31. стек протоколов тср/р. 32. схема ip-маршрутизации. 33. типы и классификация сетей. 34. передача данных по линиям связи. 35. формат ip-пакета. 36. формат и классы ip-адресов. 37. характеристика модели osi. нужна
Объяснение:
A ^ B ∨ B ^ C ∨ A ^ C
В алгебре логики различают три вида логических операций:
Конъюкция - это логическое умножение, обозначается &, ^, И
Дизъюнкция - это логическое сложение, обозначается ∨, I, ИЛИ, +
Инверсия - это логическое отрицание(т.е., если у нас 0, то с инверсии у нас получится 1), обозначаем ее как HE, ¬, -
Логические операции имеют свой порядок: сначала инверсия, потом конъюкция, потом дизъюнкция.
Давай подсчитаем количество переменных в логическом выражении: это A, B, C, т.е., 3 переменные. Подсчитаем количество действий в этом выражении: 5 действий.
Сложим кол-во действий и кол-во переменных и получим количество столбцов в таблице.
3 + 5 = 8 столбцов.
Теперь определим количество строк в таблице. Для этого воспользуемся формулой m = 2^n.
m = 2^3 = 8 строк в таблице, не считая шапки таблицы.
Чертим таблицу:
A B C A ^ B B ^ C A ^ C A^B∨B B^C∨A
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 1
1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 1
1 1 1 1 1 1 1 1
Расставим порядок действий: первым действием у нас будет A ^ B, так как конъюкция первее дизъюнкции.
Вторым действием будет B ^ C по выше сказанной причине.
Третьим действием будет A ^ C
Четвертым действием A ^ B ∨ B
Пятым действием будет B ^ C ∨ A
В таблице будет только две цифры - 0 и 1. В первых трех действиях конъюкция(лог.умножение), т.е. мы будем умножать 0 и 1. В последних двух действиях - конъюкция с дизъюнкцией, т.е. сначала будем умножать B на C и прибавлять к A. (Если алгебру знаешь - справишься).
Задача решена.
P.S Если у всех троих переменных 0 - то во всех логических действиях у них будет результат, равный нулю. Тоже самое и с ситуацией, когда все три переменные равны 1.
Объяснение:
A ^ B ∨ B ^ C ∨ A ^ C
В алгебре логики различают три вида логических операций:
Конъюкция - это логическое умножение, обозначается &, ^, И
Дизъюнкция - это логическое сложение, обозначается ∨, I, ИЛИ, +
Инверсия - это логическое отрицание(т.е., если у нас 0, то с инверсии у нас получится 1), обозначаем ее как HE, ¬, -
Логические операции имеют свой порядок: сначала инверсия, потом конъюкция, потом дизъюнкция.
Давай подсчитаем количество переменных в логическом выражении: это A, B, C, т.е., 3 переменные. Подсчитаем количество действий в этом выражении: 5 действий.
Сложим кол-во действий и кол-во переменных и получим количество столбцов в таблице.
3 + 5 = 8 столбцов.
Теперь определим количество строк в таблице. Для этого воспользуемся формулой m = 2^n.
m = 2^3 = 8 строк в таблице, не считая шапки таблицы.
Чертим таблицу:
A B C A ^ B B ^ C A ^ C A^B∨B B^C∨A
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 1
1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 1
1 1 1 1 1 1 1 1
Расставим порядок действий: первым действием у нас будет A ^ B, так как конъюкция первее дизъюнкции.
Вторым действием будет B ^ C по выше сказанной причине.
Третьим действием будет A ^ C
Четвертым действием A ^ B ∨ B
Пятым действием будет B ^ C ∨ A
В таблице будет только две цифры - 0 и 1. В первых трех действиях конъюкция(лог.умножение), т.е. мы будем умножать 0 и 1. В последних двух действиях - конъюкция с дизъюнкцией, т.е. сначала будем умножать B на C и прибавлять к A. (Если алгебру знаешь - справишься).
Задача решена.
P.S Если у всех троих переменных 0 - то во всех логических действиях у них будет результат, равный нулю. Тоже самое и с ситуацией, когда все три переменные равны 1.