//Вот программа, которая кодирует слова в системах счисления от 2 до 10 //Первый ввод - число, второй - система счисления //Pascal ABC.NET v3.0
var a,i,b,r,n,j,bug:integer; s,se,slo,slof:string;
procedure preob(var a,b,n:integer; var se:string); begin repeat b:=a mod n; a:=a div n; str(b,se); s+=se; until (a<=n-1); end;
begin readln(slo); readln(n); for j:=1 to length(slo) do begin; a:=ord(slo[j]); preob(a,b,n,se); str(a,se); s+=se; for i:=1 to length(s) div 2 do begin; se:=s[i]; s[i]:=s[length(s)-i+1]; s[length(s)-i+1]:=se[1]; end; write(s,'-'); slof:=slof+s; delete(s,1,length(s)); end; end.
//Слово Программа она кодирует как 11001111-11110000-11101110-11100011-11110000-11100000-11101100-11101100-11100000-
Чертёж дан во вложении. Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось. Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси. Найдем высоту ОС, обозначив её через h, по теореме Пифагора. ОС - это катет ΔAOC, AO ⊥ OC.
Площадь ΔABC находим по формуле
Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α
Теперь легко сделать необходимое построение. Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c INPUT "Боковая сторона: ", b h = SQR(b ^ 2 - (c / 2) ^ 2) R = b ^ 2 / (2 * h) Mx = h - R PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение: Y:\qbasic>QBASIC.EXE Основание: 6 Боковая сторона: 5 Радиус равен 3.125 Координата центра равна .875
//Первый ввод - число, второй - система счисления
//Pascal ABC.NET v3.0
var
a,i,b,r,n,j,bug:integer;
s,se,slo,slof:string;
procedure preob(var a,b,n:integer; var se:string);
begin
repeat
b:=a mod n;
a:=a div n;
str(b,se);
s+=se;
until (a<=n-1);
end;
begin
readln(slo);
readln(n);
for j:=1 to length(slo) do
begin;
a:=ord(slo[j]);
preob(a,b,n,se);
str(a,se);
s+=se;
for i:=1 to length(s) div 2 do
begin;
se:=s[i];
s[i]:=s[length(s)-i+1];
s[length(s)-i+1]:=se[1];
end;
write(s,'-');
slof:=slof+s;
delete(s,1,length(s));
end;
end.
//Слово Программа она кодирует как 11001111-11110000-11101110-11100011-11110000-11100000-11101100-11101100-11100000-
Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось.
Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси.
Найдем высоту ОС, обозначив её через h, по теореме Пифагора.
ОС - это катет ΔAOC, AO ⊥ OC.
Площадь ΔABC находим по формуле
Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α
Теперь легко сделать необходимое построение.
Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c
INPUT "Боковая сторона: ", b
h = SQR(b ^ 2 - (c / 2) ^ 2)
R = b ^ 2 / (2 * h)
Mx = h - R
PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение:
Y:\qbasic>QBASIC.EXE
Основание: 6
Боковая сторона: 5
Радиус равен 3.125 Координата центра равна .875
Чтобы продолжить, нажмите любую клавишу