Зако́н Авога́дро — закон, согласно которому в равных объёмах различных газов, взятых при одинаковых температурах и давлениях, содержится одно и то же количество молекул. В виде гипотезы был сформулирован в 1811 году Амедео Авогадро, профессором физики в Турине. Гипотеза была подтверждена многочисленными экспериментальными исследованиями и поэтому стала называться законом Авогадро, став впоследствии (через 50 лет, после съезда химиков в Карлсруэ) количественной основой современной химии (стехиометрии)[1]. Закон Авогадро точно выполняется для идеального газа, а для реальных газов он является тем более точным, чем газ более разреженный.
Зако́н Авога́дро — закон, согласно которому в равных объёмах различных газов, взятых при одинаковых температурах и давлениях, содержится одно и то же количество молекул. В виде гипотезы был сформулирован в 1811 году Амедео Авогадро, профессором физики в Турине. Гипотеза была подтверждена многочисленными экспериментальными исследованиями и поэтому стала называться законом Авогадро, став впоследствии (через 50 лет, после съезда химиков в Карлсруэ) количественной основой современной химии (стехиометрии)[1]. Закон Авогадро точно выполняется для идеального газа, а для реальных газов он является тем более точным, чем газ более разреженный.
Связь между энергией активации ТАК и энтальпией активации.
Пересчет по уравнению Киркгоффа.
Энергия активации ТАК относится к реакции превращения реагентов в
активированный комплекс при абсолютном нуле температуры. При этой температуре
изменения энтальпии и внутренней энергии равны
0 0
0 0 ; 0 H UE T ТАК K
T
R
R
(1)
Энтальпия активации относится к той же самой реакции, но при более высокой
температуре Т. Пересчитаем энтальпию от температуры Т=0 К к температуре Т с
закона Кирхгоффа. Будем считать, что все участники реакции – идеальные газы,
тогда
0
0 0
0
T T
T ТАК p ТАК V
T
ТАК V
Н E c dT E c R d
E c dT RT
(2)
p
с равна разности теплоемкостей продуктов и реагентов. Для каждой теплоемкости
выполняется равенство
p V с c (3)
Активированный комплекс образуется из двух частиц-реагентов, поэтому
p V с c (4)
Соотношение (4) использовано в (2).
Допустим теперь, что для поступательных и вращательных степеней свободы
активированного комплекса и реагентов выполняется закон равнораспределения, т.е.
каждой степени свободы соответствует теплоемкость при любой температуре
1
2 Vс R
Теплоемкости, соответствующие колебательным степеням свободы, будем считать
близкими к нулю и не будем их учитывать в расчете. Тогда появляется возможность
рассчитать интеграл в формуле (2). Допустим, что активированный комплекс
и оба реагента – нелинейные частицы. Тогда у каждой будет по три поступательных и три
вращательных степени свободы. Получаем