Если есть смешанная дробь, в дробной части которой числитель больше знаменателя (смешанная неправильная дробь), то нужно в этой дробной части числитель разделить на знаменатель нацело, с остатком. Результат от деления (частное) прибавить к целой части исходной дроби - это будет целая часть нового смешанного числа (смешанной правильной дроби). В дробной части нового смешанного числа числителем будет остаток от деления, а знаменателем - частное (знаменатель дробной части исходной смешанной дроби)
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
Пошаговое объяснение:
Треугольники АВС и АСР подобны по свойству высоты прямоугольного треугольника, проведенному из прямого угла.
<B = <ACP (так как треугольники АВС и АСР подобны). =>
tg(<АСР) = 2,4. => АР = 2,4*РС.
По Пифагору АС=√(АР²+РС²) = √(2,4²РС²+РС²).
АС = √(6,76*РС²) = 2,6*РС. Sapc = (1/2)*AP*PC = 1,2*РС².
Радиус вписанной в треугольник АРС окружности равен r = S/p (формула), где р - полупериметр треугольника АРС.
р = (РС+2,4РС+2,6РС)/2 = 3*РС. Тогда 12 = 1,2*РС/3 => PC = 30см.
Итак, РС = 30см, АР = 2,4*30= 72см и АС = 2,6*30= 78см.
В треугольнике АВС tgB = АС/ВС= 2,4 => BC = 78/2,4 = 32,5 см. Тогда
Sabc = (1/2)*AC*BC = (1/2)*78*32,5 = 1267,5 см².
СР = АС*ВС/АВ (свойство высоты из прямого угла треугольника) =>
АВ = АС*ВС/СР = 78*32,5/30 = 84,5 см.
Полупериметр треугольника АВС: р= (78+32,5+84,5)/2 =97,5 см. Тогда радиус вписанной в треугольник АВС окружности равен
r = 1267,5/97,5 = 13 см. Это ответ.