В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Регина557
Регина557
02.11.2020 03:38 •  Математика

1. довжина залу 18 м, а ширина - 12 м. підлогу тут двічі покривали фарбою. першого разу на кожний квадратний метр витратили 130 г фарби , а другого - 90 г. скільки грамів фарби витратили? 2. довжина дослідної ділянки 34 м, а ширина - 24м. 1/4 площі займають огірки, помідори і цибуля, а решту - картопля. яку площу займає картопля?

Показать ответ
Ответ:
lislibert
lislibert
30.03.2020 15:38
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC.
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.

AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²

Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.

Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:

Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2

M(1;0;2)

Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2

N(2;-1;5/2)

MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2

ответ, разумеется, такой же: длина MN равна 1,5.
0,0(0 оценок)
Ответ:
katyushakot201
katyushakot201
16.04.2023 02:59

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

Не имеют корней;

Имеют ровно один корень;

Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант. Дискриминант Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

Если D < 0, корней нет;

Если D = 0, есть ровно один корень;

Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:Задача. Сколько корней имеют квадратные уравнения:

x2 − 8x + 12 = 0;

5x2 + 3x + 7 = 0;

x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:

a = 1, b = −8, c = 12;

D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16 Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:

a = 5; b = 3; c = 7;

D = 32 − 4 · 5 · 7 = 9 − 140 = −131.Дискриминант отрицательный, корней нет. Осталось последнее уравнение:

a = 1; b = −6; c = 9;

D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.Дискриминант равен нулю — корень будет один.Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.Корни квадратного уравнения Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:Формула корней квадратного уравнения Основная формула корней квадратного уравнения Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота