Легенда. Приведу свой пример. Выросла я в пригороде Краснодара, в поселке Тлюстенхабль. Мой дед был интересным рассказчиком, и я с удовольствием слушала различные байки, которых в запасе у него было немерено. Например, там, где расположен поселок, раньше был лес, и в переводе с адыгейского окрестности назывались «место, где кормится волк». А первым человеком, поселившимся на опушке, был мужчина по имени Тлюстен, отсюда название и пошло. Однако позже, когда поселение расширилось, его стали называть Султанским хутором. Потому что проживали здесь несколько княжеских семей. Но самыми именитыми были Хан-Гиреи, им большая часть села и принадлежала. А глава семьи Султан Хан-Гирей состоял на службе у Николая Второго. Но суть не в этом. Семья моего деда попала в эти места случайно. Его предки Бачемуковы жили в горах. Однако во время Кавказской войны был убит его прадед. А молодая жена осталась одна с двумя сыновьями на руках. У братьев овдовевшей женщины созрел злой замысел - детей продать в рабство туркам, а сестру, которая слыла красавицей, удачно выдать замуж. Об этом прознала одна из родственниц убитого, которая проживала в Султанском хуторе. Тайком вывезла невестку с племянниками и поселила у себя. С тех пор почти 200 лет. В детстве я не понимала, почему по дедушкиной линии у нас так мало родственников, ведь у адыгов, как правило, многочисленные семейства. Это предание удовлетворило мое любопытство и, став взрослее, я рассказала об этой истории в одной из газет, где проходила практику. Я уже и забыла про этот материал, когда однажды в дом моего деда целая делегация из Шовгеновского района… Оказывается, это потомки той семьи, из которой два века назад увезли в Тлюстенхабль женщину с двумя сыновьями. Они тоже носят фамилию Бачемуковы. Они, прочитав мою заметку, решили познакомиться с потерянным родственником. Так мой дед, как и полагается любому черкесу, обрел многочисленную семью.
поскольку шифры отличаются между собой только порядком расположения элементов (цифр), но не самими элементами. В условии написано, что шифр состоит из различных цифр (нет повторений, учитывается порядок), поэтому размещения и сочетания не подходят. Будем переставлять их всеми возможными (число элементов остается неизменными, меняется только их порядок).
Первую цифру шифра можно выбрать из 4, вторую - из 3 оставшихся цифр, третью - из 2 оставшихся, четвёртую - из 1 оставшейся. Таким образом, возможное количество вариантов:
Р(4)=4!=1*2*3*4=24 (варианта)
Б. Первую цифру шифра можно выбрать из 5, вторую - из 4 оставшихся, третью - из 3 оставшихся, четвёртую - из 2 оставшихся. поэтому все возможные варианты шифра - это:
P(5)=5!=5*4*3*2=120 (вариантов)
В. Первую цифру шифра можно выбрать из 6, вторую - из 5 оставшихся, третью - из 4 оставшихся, четвёртую - из 3 оставшихся. Здесь подойдет формула размещения, потому что порядок имеет значение, но не все цифры могут состоять в шифре (дано шесть цифр, а шифр должен состоять из 4). Тогда возможное количество вариантов составляет:
А. Здесь подходит формула перестановок
Pn=n*(n−1)*(n−2)*...=n!,
поскольку шифры отличаются между собой только порядком расположения элементов (цифр), но не самими элементами. В условии написано, что шифр состоит из различных цифр (нет повторений, учитывается порядок), поэтому размещения и сочетания не подходят. Будем переставлять их всеми возможными (число элементов остается неизменными, меняется только их порядок).
Первую цифру шифра можно выбрать из 4, вторую - из 3 оставшихся цифр, третью - из 2 оставшихся, четвёртую - из 1 оставшейся. Таким образом, возможное количество вариантов:
Р(4)=4!=1*2*3*4=24 (варианта)
Б. Первую цифру шифра можно выбрать из 5, вторую - из 4 оставшихся, третью - из 3 оставшихся, четвёртую - из 2 оставшихся. поэтому все возможные варианты шифра - это:
P(5)=5!=5*4*3*2=120 (вариантов)
В. Первую цифру шифра можно выбрать из 6, вторую - из 5 оставшихся, третью - из 4 оставшихся, четвёртую - из 3 оставшихся. Здесь подойдет формула размещения, потому что порядок имеет значение, но не все цифры могут состоять в шифре (дано шесть цифр, а шифр должен состоять из 4). Тогда возможное количество вариантов составляет:
(вариантов)
ответ: 24, 120, 360.