Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
1 к 28
Нужно найти, сколько существует достать 3 черных шара из общего количества. После, найти количество достать 3 любых шара в принципе и разделить первое на второе.
Находим первое с формулы и комбинаторики С:
С = 6! / (3! * (6 - 3)!) = (3! * 4 * 5 * 6) / (1 * 2 * 3 * 3!) = 4 * 5 = 20 (вариантов, как достать 3 черных шара).
Теперь находим количество возможностей достать три шара:
С = 16! / (3! * (16 - 3)!) = (13! * 14 * 15 * 16) / (1 * 2 * 3 * 13!) = 35 * 16 = 560 (вариаций достать три шара).
Вероятность достать три черных шара из общего количества:
20/560 = 2/56 = 1/28.
ответ: 1/28.
Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
1 к 28
Пошаговое объяснение:
Нужно найти, сколько существует достать 3 черных шара из общего количества. После, найти количество достать 3 любых шара в принципе и разделить первое на второе.
Находим первое с формулы и комбинаторики С:
С = 6! / (3! * (6 - 3)!) = (3! * 4 * 5 * 6) / (1 * 2 * 3 * 3!) = 4 * 5 = 20 (вариантов, как достать 3 черных шара).
Теперь находим количество возможностей достать три шара:
С = 16! / (3! * (16 - 3)!) = (13! * 14 * 15 * 16) / (1 * 2 * 3 * 13!) = 35 * 16 = 560 (вариаций достать три шара).
Вероятность достать три черных шара из общего количества:
20/560 = 2/56 = 1/28.
ответ: 1/28.