13. Бегимай сделала покупки на сумму 235, 72 и 1989 сомов и расплати- Пась по карточке. Сколько сомов она должна, если до совершения покупок на карточке было 1437 сомов?
Рассмотрим событие А - из наугад выбранной урны будет извлечён белый шар. Это может произойти в результате следующих предположений: B₁ - будет выбрана 1-я урна В₂ - будет выбрана 2-я урна В₃ - будет выбрана 3-я урна Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна P(B₁)=P(B₂)=P(B₃)=1/3 Далее. В первой урне 3 белых шара + 1 чёрный = 4 шара. Вероятность извлечения белого шара, если будет выбрана первая урна P₁=3/4 Во второй урне 6 белых + 4 черных = 10 шаров. Вероятность извлечения белого шара, если будет выбрана вторя урна P₂=6/10=3/5 В третьей урне 9 белых + 1 чёрный = 10 шаров. Вероятность извлечения белого шара, если будет выбрана третья урна Р₃=9/10 По формуле полной вероятности Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10= =1/4+1/5+3/10=3/4
А)3\4 и 9\12 Чтобы сравнить эти дроби, надо привести их к общему знаменателю. Домножаем 3\4 на 3 и получаем 9\12. Следовательно, дроби равны. 3\4=9\12 Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой. 7\5<3\2 В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй. 5\6>5\8
B₁ - будет выбрана 1-я урна
В₂ - будет выбрана 2-я урна
В₃ - будет выбрана 3-я урна
Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна
P(B₁)=P(B₂)=P(B₃)=1/3
Далее.
В первой урне 3 белых шара + 1 чёрный = 4 шара.
Вероятность извлечения белого шара, если будет выбрана первая урна
P₁=3/4
Во второй урне 6 белых + 4 черных = 10 шаров.
Вероятность извлечения белого шара, если будет выбрана вторя урна
P₂=6/10=3/5
В третьей урне 9 белых + 1 чёрный = 10 шаров.
Вероятность извлечения белого шара, если будет выбрана третья урна
Р₃=9/10
По формуле полной вероятности
Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10=
=1/4+1/5+3/10=3/4
ответ: 3/4
3\4=9\12
Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой.
7\5<3\2
В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй.
5\6>5\8