В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

1344. Постройте графики прямой пропорциональн
1) у = 2х;
x 1012
4) у = -2,5х;
у
2) у = -х;
5) y = -4x;
у
x 10 11
о
o1
x 0
x | 0 1
у
3.
1
3) y =
х 10 3
6) y =
х 10 4
4.
3​

Показать ответ
Ответ:
kiratheone
kiratheone
26.05.2021 18:35
5/9 > 4/9
1 номер
5/9 > 4/9
1/8 < 7/8
2/5 < 3/5
2/7 < 6/7
2 номер
11/19 > 7/19
17/38 < 23/38
4/51 < 23/51
23/100 < 67/100
Там где цифра больше к знаменателю то и больше.
3 номер
1/4-правильная
5/3-правильная
3/4-правильная
4/6-правильная
8/8-не правильная
23/22-не правильная
209/999-правильная
Правильная дробь если числитель меньше знаменателя а если числитель больше знаменателя значит дробь не правильная.
4 номер
5/9-меньше 1
4/3-меньше 1
8/13-меньше 1
17/9-равно 1
81/79-больше 1
7/7-меньше 1
2/9-меньше 1
51/90-больше 1
42/42-больше 1
1/19-меньше 1
0,0(0 оценок)
Ответ:
Oles1115
Oles1115
21.03.2021 15:18
Результаты исследования графика функции y=-x³+6x².

Область определения функции. ОДЗ:-∞<x<∞

Точка пересечения графика функции с осью координат Y:

График пересекает ось Y, когда x равняется 0: подставляем x=0 в =-x³+6x². 
Результат: y=0. Точка: (0, 0)

Точки пересечения графика функции с осью координат X:

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:

-x³+6x²= 0

Решаем это уравнение  и его корни будут точками пересечения с X:

-x3+6x² = -x²(х-6) = 0

x=0. Точка: (0, 0)

x=6. Точка: (6, 0) .

Экстремумы функции:

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:

y'=-3x² + 12х=0

Решаем это уравнение и его корни будут экстремумами:

-3x² + 6х = -3x(х-4) = 0.

x=0. Точка: (0, 0)

x=2. Точка: (4, 32)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке: x_{2} = 0.
Максимум функции в точках: x_{2} = 4.

Возрастает на промежутке [0, 4].

Убывает на промежутках (-oo, 0] U [4, oo).



Исследовать на монотонность и точки экстремума функции. найти экстремум на монотонность и точки экст
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота