1344. Постройте графики прямой пропорциональн 1) у = 2х; x 1012 4) у = -2,5х; у 2) у = -х; 5) y = -4x; у x 10 11 о o1 x 0 x | 0 1 у 3. 1 3) y = х 10 3 6) y = х 10 4 4. 3
Результаты исследования графика функции y=-x³+6x².
Область определения функции. ОДЗ:-∞<x<∞
Точка пересечения графика функции с осью координат Y:
График пересекает ось Y, когда x равняется 0: подставляем x=0 в =-x³+6x². Результат: y=0. Точка: (0, 0)
Точки пересечения графика функции с осью координат X:
График функции пересекает ось X при y=0, значит, нам надо решить уравнение:
-x³+6x²= 0
Решаем это уравнение и его корни будут точками пересечения с X:
-x3+6x² = -x²(х-6) = 0
x=0. Точка: (0, 0)
x=6. Точка: (6, 0) .
Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=-3x² + 12х=0
Решаем это уравнение и его корни будут экстремумами:
-3x² + 6х = -3x(х-4) = 0.
x=0. Точка: (0, 0)
x=2. Точка: (4, 32)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимум функции в точке: x_{2} = 0. Максимум функции в точках: x_{2} = 4.
1 номер
5/9 > 4/9
1/8 < 7/8
2/5 < 3/5
2/7 < 6/7
2 номер
11/19 > 7/19
17/38 < 23/38
4/51 < 23/51
23/100 < 67/100
Там где цифра больше к знаменателю то и больше.
3 номер
1/4-правильная
5/3-правильная
3/4-правильная
4/6-правильная
8/8-не правильная
23/22-не правильная
209/999-правильная
Правильная дробь если числитель меньше знаменателя а если числитель больше знаменателя значит дробь не правильная.
4 номер
5/9-меньше 1
4/3-меньше 1
8/13-меньше 1
17/9-равно 1
81/79-больше 1
7/7-меньше 1
2/9-меньше 1
51/90-больше 1
42/42-больше 1
1/19-меньше 1
Область определения функции. ОДЗ:-∞<x<∞
Точка пересечения графика функции с осью координат Y:
График пересекает ось Y, когда x равняется 0: подставляем x=0 в =-x³+6x².
Результат: y=0. Точка: (0, 0)
Точки пересечения графика функции с осью координат X:
График функции пересекает ось X при y=0, значит, нам надо решить уравнение:
-x³+6x²= 0
Решаем это уравнение и его корни будут точками пересечения с X:
-x3+6x² = -x²(х-6) = 0
x=0. Точка: (0, 0)
x=6. Точка: (6, 0) .
Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=-3x² + 12х=0
Решаем это уравнение и его корни будут экстремумами:
-3x² + 6х = -3x(х-4) = 0.
x=0. Точка: (0, 0)
x=2. Точка: (4, 32)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке: x_{2} = 0.
Максимум функции в точках: x_{2} = 4.
Возрастает на промежутке [0, 4].
Убывает на промежутках (-oo, 0] U [4, oo).