В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
fsdfsdfdsfsdfsdf
fsdfsdfdsfsdfsdf
09.11.2020 10:15 •  Математика

15) Найдите наименьшее значение функции на отрезке [4;6]


15) Найдите наименьшее значение функции на отрезке [4;6]

Показать ответ
Ответ:
5284144
5284144
15.10.2020 15:28

В точке х=5 функция принимает наименьшее значение -1

Пошаговое объяснение:

Сначала найдем значения функции на концах отрезка

f(4)=(4-6)*e^{4-5}=-\frac{2}{e}

f(6)=(6-6)*e^{6-5}=0

Теперь исследуем функцию на наличие экстремума в пределах отрезка.

Найдем ее производную, как производную произведения

f'(x)=e^{x-5}+(x-6)e^{x-5}=e^{x-5}(x-5)

Приравниваем производную к нулю

e^{x-5}(x-5)=0

Показательная функция не может быть равна нулю, поэтому нулю равна скобка, т.е. х=5 - локальный экстремум. Исследуем как меняется знак производной в этой точке

f'(4)=e^{4-5}(4-5)=-\frac{1}{e} - функция убывает

f'(6)=e^{6-5}(6-5)=e - функция возрастает, значит точка х=5 - точка минимума функции. Значение функции в этой точке

f(5)=(5-6)e^{5-5}=-1

Из всех трех значений, именно это наименьшее. Значит функция принимает наименьшее значение -1 в точке x=5. Подкреплю свои расчеты графиком.


15) Найдите наименьшее значение функции на отрезке [4;6]
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота