ответ:x =i
Пошаговое объяснение: Пусть число z=x + iy
– искомое комплексное число, где x и y – действительные числа. Тогда число z⁻= x - iy , сопряженное числу z
По условию задачи имеем:z⁻ = z³ , ⇒ (x+iy)³= x - iy ⇒
x³+3x²iy+3xi²y²+i³y³= x - iy
Преобразовав это уравнение, получим: (x³+3x²y)+ i(3x²y-y³)= x-iy
У нас два комплексных числа равны , значит будут равны соответственно их действительные и мнимые части:
x³+3x²y=х и 3x²y-y³= -у
Возможны два случая: 1) если у≠0, то
x³+3xy²=х и 3x²-y²= -1
у² =1+3х² ⇒
х³+3х(1+3х²)=х ⇒ 10х³ + 2х=0 ⇒ 2х(5х²+1) = 0 ⇒ х =0, тогда у=1+3·0²=1 Этот случай имеет следующее решение: (0; 1)
Тогда число z₁=0+1·i = i ⇒ z₁= i искомое комплексное число
2) если у=0, то
х³ - х =0 и у = 0
х(х² -1) =0
х=0 или х=±1
Этот случай имеет следующие решения: (0; 0) и (1; 0), (-1; 0)
тогда им соответствуют числа
z₂=0+0·i = 0 ( действительное число)
z₃= 1+0·i = 1 ( действительное число)
z₄=-1+0i= -1 ( действительное число)
Значит х = i -искомое комплексное число
0, 1, -1, i, -i.
Пошаговое объяснение:
Для числа a+bi сопряженное a-bi. Получаем (a+bi)^3 = a-bi;
a^3 + 3 a^2 bi + 3 a (bi)^2 + (bi)^3 = a - bi
a^3 + 3 a^2 bi - 3 a b^2 - b^3 i = a - bi
Действительные и мнимые части должны совпадать:
если a и b не равны 0, то
Складываем уравнения: Отсюда a=b или a = -b. В любом из этих случаев из первого уравнения , что невозможно.
Если a=0, то из второго уравнения (до сокращения) или b = 0.
Если b=0, то из первого уравнения или a = 0.
Итого 5 чисел: 0, 1, -1, i, -i.
ответ:x =i
Пошаговое объяснение: Пусть число z=x + iy
– искомое комплексное число, где x и y – действительные числа. Тогда число z⁻= x - iy , сопряженное числу z
По условию задачи имеем:z⁻ = z³ , ⇒ (x+iy)³= x - iy ⇒
x³+3x²iy+3xi²y²+i³y³= x - iy
Преобразовав это уравнение, получим: (x³+3x²y)+ i(3x²y-y³)= x-iy
У нас два комплексных числа равны , значит будут равны соответственно их действительные и мнимые части:
x³+3x²y=х и 3x²y-y³= -у
Возможны два случая: 1) если у≠0, то
x³+3xy²=х и 3x²-y²= -1
у² =1+3х² ⇒
х³+3х(1+3х²)=х ⇒ 10х³ + 2х=0 ⇒ 2х(5х²+1) = 0 ⇒ х =0, тогда у=1+3·0²=1 Этот случай имеет следующее решение: (0; 1)
Тогда число z₁=0+1·i = i ⇒ z₁= i искомое комплексное число
2) если у=0, то
х³ - х =0 и у = 0
х(х² -1) =0
х=0 или х=±1
Этот случай имеет следующие решения: (0; 0) и (1; 0), (-1; 0)
тогда им соответствуют числа
z₂=0+0·i = 0 ( действительное число)
z₃= 1+0·i = 1 ( действительное число)
z₄=-1+0i= -1 ( действительное число)
Значит х = i -искомое комплексное число
0, 1, -1, i, -i.
Пошаговое объяснение:
Для числа a+bi сопряженное a-bi. Получаем (a+bi)^3 = a-bi;
a^3 + 3 a^2 bi + 3 a (bi)^2 + (bi)^3 = a - bi
a^3 + 3 a^2 bi - 3 a b^2 - b^3 i = a - bi
Действительные и мнимые части должны совпадать:
если a и b не равны 0, то
Складываем уравнения: Отсюда a=b или a = -b. В любом из этих случаев из первого уравнения , что невозможно.
Если a=0, то из второго уравнения (до сокращения) или b = 0.
Если b=0, то из первого уравнения или a = 0.
Итого 5 чисел: 0, 1, -1, i, -i.