Решение Находим первую производную функции: y' = -( - x + 13)e^(- x + 13) - e^(- x + 13) или y' = (x -14)e^(- x + 13) Приравниваем ее к нулю: (x - 14) e^(- x + 13) = 0 e^(- x + 13) ≠ 0 x - 14 = 0 x = 14 Вычисляем значения функции f(14) = 1/e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13) или y'' = (- x+15)e^(- x + 13) Вычисляем: y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
Находим первую производную функции:
y' = -( - x + 13)e^(- x + 13) - e^(- x + 13)
или
y' = (x -14)e^(- x + 13)
Приравниваем ее к нулю:
(x - 14) e^(- x + 13) = 0
e^(- x + 13) ≠ 0
x - 14 = 0
x = 14
Вычисляем значения функции
f(14) = 1/e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13)
или
y'' = (- x+15)e^(- x + 13)
Вычисляем:
y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e
y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
Найдём производную функции: = 3х² - 4* 2х + 0 = 3х² - 8х
Область определения производной : R
Найдём нули производной: 3х² - 8х = 0
х * (3х - 8) = 0
1) х=0 2) 3х-8 =0
3х=8
х = 8/3
+ 0 - 8/3+
↑ ↓ ↑
Итак, х =0 точка максимума, х = 8/3 - точка минимума функции.