В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
Так как на обратный путь пароход затратил большее время, то в Сантарен он плыл по течению реки, а обратно - против течения. Пусть v км/день - собственная скорость парохода, a v1 (км/день) - скорость течения. Тогда в Сантарен пароход шёл со скоростью (v+v1) км/день, а обратно - со скоростью (v-v1) км день. Отсюда получаем уравнение (v+v1)*9=(v-v1)*12, или 9*v+9*v1=12*v-12*v1. Перенося левую часть вправо, получаем уравнение 3*v-21*v1=0, или 3*v=21*v1, или v=7*v1. Значит, в Сантарен пароход шёл со скоростью v+v1=8*v1 км день, т.е. в 8 раз быстрее, чем шёл бы плот, скорость которого равна скорости течения v1. А это значит, что и плыть на плоту пришлось бы в 8 раз дольше, т.е. 9*8=72 дня. ответ: за 72 дня.
p(H2) = (3/5)*(2/6) = 1/5
p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15
Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1
Событие A заключается в том что из 3 урны достали белый шар.
Посчитаем условные вероятности
p(A|H1) = 1, из двух белых выбирают белый
p(A|H2) = 0, из двух черных выбирает белый
p(A|H3) = 1/2, из черного и белого выбирают белый
Полная вероятность события A:
p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15
ответ: 8/15