ответ:Каждые уравнения решаются по своему. В квадратных нужно решать через дискриминант по специальной формуле. Где то нужно вынести за скобки, к примеру (2х^2-х)=0 тут выносишь икс за скобку и пишешь либо х=0 либо 2х-1=0, следовательно корни уравнения буду х=0 и х=1/2. Есть так же уравнения решаемые по схеме Горнера. В таких уравнениях содержатся степени больше чем 2. Там тоже своя система. Ну а логарифмические и показательние так это вообще отдельная тема! Так что, дорогой друг, тут так все и не объяснить)
Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
ответ:Каждые уравнения решаются по своему. В квадратных нужно решать через дискриминант по специальной формуле. Где то нужно вынести за скобки, к примеру (2х^2-х)=0 тут выносишь икс за скобку и пишешь либо х=0 либо 2х-1=0, следовательно корни уравнения буду х=0 и х=1/2. Есть так же уравнения решаемые по схеме Горнера. В таких уравнениях содержатся степени больше чем 2. Там тоже своя система. Ну а логарифмические и показательние так это вообще отдельная тема! Так что, дорогой друг, тут так все и не объяснить)
Пошаговое объяснение:
ответ: 6 см и 8 см
Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
x₁+х₂= -p,
x₁•x₂=q