48. Какие цифры можно поставить в запись числа 340 12* вместо звёздочки, чтобы полученное число делилось: 1) на 9; 3) и на 9, и на 3; 2) на 3; 4) и на 5, и на 3?
Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.
К рациональным числам относятся следующие категории чисел:
целые числа (например −2, −1, 0 1, 2 и т.д.)
обыкновенные дроби (например одна вторая, одна третья, три четвёртых и т.п.)
смешанные числа (например две целых одна вторая, одна целая две третьих, минус две целых одна третья и т.п.)
десятичные дроби (например 0,2 и т.п.)
бесконечные периодические дроби (например 0,(3) и т.п.)
Каждое число из этой категории может быть представлено в виде дроби a разделить на b .
Примеры:
Пример 1. Целое число 2 может быть представлено в виде дроби две первых . Значит число 2 относится не только к целым числам, но и к рациональным.
Пример 2. Смешанное число две целых одна вторая может быть представлено в виде дроби пять вторых. Данная дробь получается путём перевода смешанного числа в неправильную дробь
перевод двух целых одной второй в неправильную дробь
Значит смешанное число две целых одна вторая относится к рациональным числам.
Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби две десятых . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.
Поскольку десятичная дробь 0,2 может быть представлена в виде дроби две десятых , значит она тоже относится к рациональным числам.
Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых. Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.
Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых , значит она тоже относится к рациональным числам.
В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.
Такие задания решаются по теореме Виета (я прикрепила картинку с ней). Также если произведение x1x2 меньше 0, то знаки у корней разные. Если больше - одинаковые. Если одинаковые, смотрим на сумму x1+x2. Если сумма больше нуля, то плюсы, меньше - минусы
Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.
К рациональным числам относятся следующие категории чисел:
целые числа (например −2, −1, 0 1, 2 и т.д.)
обыкновенные дроби (например одна вторая, одна третья, три четвёртых и т.п.)
смешанные числа (например две целых одна вторая, одна целая две третьих, минус две целых одна третья и т.п.)
десятичные дроби (например 0,2 и т.п.)
бесконечные периодические дроби (например 0,(3) и т.п.)
Каждое число из этой категории может быть представлено в виде дроби a разделить на b .
Примеры:
Пример 1. Целое число 2 может быть представлено в виде дроби две первых . Значит число 2 относится не только к целым числам, но и к рациональным.
Пример 2. Смешанное число две целых одна вторая может быть представлено в виде дроби пять вторых. Данная дробь получается путём перевода смешанного числа в неправильную дробь
перевод двух целых одной второй в неправильную дробь
Значит смешанное число две целых одна вторая относится к рациональным числам.
Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби две десятых . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.
Поскольку десятичная дробь 0,2 может быть представлена в виде дроби две десятых , значит она тоже относится к рациональным числам.
Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых. Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.
Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых , значит она тоже относится к рациональным числам.
В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.
б) x1x2 = -1, x1+x2 = -3
x1x2 <0, x1+x2 <0
Один корень со знаком +, другой со знаком -
в). x1x2 = 3, x1+x2 = 1
x1x2 >0, x1+x2 >0
Оба корня со знаком +
г). x1x2 = -3, x1+x2 = -1
x1x2 <0, x1+x2 <0
Один корень со знаком +, другой со знаком -
Такие задания решаются по теореме Виета (я прикрепила картинку с ней). Также если произведение x1x2 меньше 0, то знаки у корней разные. Если больше - одинаковые. Если одинаковые, смотрим на сумму x1+x2. Если сумма больше нуля, то плюсы, меньше - минусы