Алгебраическая дробь не имеет смысла, когда знаменатель дроби равен нулю.
а) 1/2х
2х=0
х=0
б) (х-1)/(х+3)
х+3=0
х=-3
Выражение не имеет смысла при х=-3
в) (х-5)/(х-5)²
х-5=0
х=5
Выражение не имеет смысла при х=5
г) (х³+8)/(х²-4)= (х³+8)/((х-2)(х+2))
(х-2)(х+2)=0
х-2=0, х+2=0
х=2 х=-2
Выражение не имеет смысла при х=2 и х=-2
д) (х²-2)/(х²+2)
х²+2≠0, т.к. х²+2>0 для любого значения х
Следовательно, выражение имеет смысл при любом х∈(-∞;+∞)
е) 8х/(х(х-1))
х(х-1)=0
х=0, х-1=0
х=1
Выражение не имеет смысла при х=0 и х=1
Пошаговое объяснение:
решала с репетитором вроде бы это задание
Алгебраическая дробь не имеет смысла, когда знаменатель дроби равен нулю.
а) 1/2х
2х=0
х=0
б) (х-1)/(х+3)
х+3=0
х=-3
Выражение не имеет смысла при х=-3
в) (х-5)/(х-5)²
х-5=0
х=5
Выражение не имеет смысла при х=5
г) (х³+8)/(х²-4)= (х³+8)/((х-2)(х+2))
(х-2)(х+2)=0
х-2=0, х+2=0
х=2 х=-2
Выражение не имеет смысла при х=2 и х=-2
д) (х²-2)/(х²+2)
х²+2≠0, т.к. х²+2>0 для любого значения х
Следовательно, выражение имеет смысл при любом х∈(-∞;+∞)
е) 8х/(х(х-1))
х(х-1)=0
х=0, х-1=0
х=1
Выражение не имеет смысла при х=0 и х=1
Пошаговое объяснение:
решала с репетитором вроде бы это задание
Принимаем первое слагаемое за «х», а второе за «y». Составляем систему уравнений:
{ х + y = 2801, 10х + y = 10001.
Выразим «y» через «х» с второго уравнения:
y = 10001 - 10х.
Подставляем полученное выражение в первое уравнение:
х + 10001 — 10х = 2801.
Вычисляем «х»:
х + 10001 — 10х = 2801;
- 9х = 2801 — 10001;
- 9х = - 7200;
х = 800.
Вычисляем «y»:
y = 10001 — 8000 = 2001.
Проверка:
{ 800 + 2001 = 2801, 10 * 800 + 2001 = 10001 - равенства выполняются.
ответ: первое слагаемое равно 800.