6. Составь задачи по кратким записям и рет а) В первый день - 21 человек ? человек Во второй день - ?, в 3 раза больше 6) В первый день - 31 человек Во второй день - ?, на 12 человек меньше В третий день - ? человек п 90 человек
1. Делитель натурального числа (далее нч) - это число, на которое делится нч без остатка. Кратное - это число, получаемое при умножении нч на другое число. Т.е. которое можно поделить на нч без остатка. Например, число 4. 2 - это делитель нч, т.к. 4:2=2. А 16 - это кратное. 16:4=4. 2. При делимости на 10 число должно быть "круглым", т.е. оканчиваться на 0. Например, 70. При делимости на 5 нч должно оканчиваться 0 или 5. Например, 35. На 2 делится любое четное число, то есть заканчивающееся на 0;2;4;6;8. 16;20;38 и прочие. Для деления на 3 и 9 необходимо, чтобы сумма цифр нч давала в результате число, кратное 3 и 9 соответственно. Например, 111 делится на 3, потому что 1+1+1=3. И 222 делится на 3, так как 2+2+2=6, а 6 кратно 3. На 9 делится, например, 630, 6+3+0=9. 882 тоже делится на 9, 8+8+2=18, кратно 9. 3. Простые числа - это числа, делящиеся без остатка только на себя и единицу. Составные - делящиеся без остатка не только на себя и единицу, но и еще на какое-либо число (или числа). Например, 5-простое, а 6-нет, потому что 6:2=3. 4. Это проще показать. Допустим, надо разложить число 6. 6:2=3; 6:3=2. Простые множетили 6 - 2 и 3. Но тут важно помнить простые числа хотя бы до 23, потому что если один из множителей, например, 4, то следует разложить его на 2 и 2 (записав ...2;2). 5. Взаимно простыми называются нч, если они не имеют никаких общих делителей, кроме 1. Например, 45 и 16. 45=(5;3;3), 16=(2;2;2;2), ни один из множителей не совпадает. 6. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Поэтому 2|3 = 4(2*2)|6(3*2) =6|9 и т.п. 7. Чтобы умножить дробь, необходимо увеличить числитель. Чтобы разделить - знаменатель. 2|3 * 2=2*2|3=4|3. 2|3 : 3=2|3*3=2|9. Чтобы умножить дробь на дробь надо числитель первой дроби умножить на числитель второй, знаменатели умножить аналогично. 2|3*4|5=2*4|3*5=8|15 Чтобы разделить дробь на дробь, надо числитель первой дроби умножить на знаменатель второй, а знаменатель - на числитель. 4|5:2|3=4*3|2*5=12|10(=1,2) 8. Два числа, произведение которых равно 1, называют взаимно обратными. Например: 3 и 1|3, т.к. 3*1|3=3|3=1 9. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Если числитель и знаменатель дроби являются взаимно простыми числами, то такая дробь называется несократимой. 6|9=6:3|9:3=2|3. 10. Для приведения дробей к общему знаменателю надо: 1. найти наименьшее общее кратное знаменателей этих дробей (наименьший общий знаменатель); 2. разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3. умножить числитель и знаменатели каждой дроби на ее дополнительный множитель. 1|2 и 2|3. 2 и 3 - простые, значит, НОК=произведению 2 и 3=6. 6:2=3;6:3=2. 1*3|2*3 и 2*2|3*2= 3|6 и 4|6
Заметим, что сумма цифр любого счастливого билета четна (сумма каких-то трех цифр и оставшихся трех - это сумма двух одинаковых чисел, по условию задачи; а сумма двух одинаковых целых чисел всегда четная).
У первого счастливого билета сумма, соответственно, тоже четная.
Если у нас на конце этого билета будет любая из цифр 0, 1, 2, ... , 8 (все, кроме 9), то сумма цифр второго билета - это та же самая сумма, только "плюс один" (так как перехода через десяток не будет), и, следовательно, сумма второго билета будет нечетной, чего не может быть.
Делаем вывод, что последняя цифра - это не 0, 1, ... , 8, а цифра 9.
Пример:
В качестве подтверждающего примера могут служить следующие числа:
меньший номер оканчивается на цифру 9,
больший номер оканчивается на цифру 0.
Заметим, что сумма цифр любого счастливого билета четна (сумма каких-то трех цифр и оставшихся трех - это сумма двух одинаковых чисел, по условию задачи; а сумма двух одинаковых целых чисел всегда четная).
У первого счастливого билета сумма, соответственно, тоже четная.
Если у нас на конце этого билета будет любая из цифр 0, 1, 2, ... , 8 (все, кроме 9), то сумма цифр второго билета - это та же самая сумма, только "плюс один" (так как перехода через десяток не будет), и, следовательно, сумма второго билета будет нечетной, чего не может быть.
Делаем вывод, что последняя цифра - это не 0, 1, ... , 8, а цифра 9.
Пример:
В качестве подтверждающего примера могут служить следующие числа:
Первый билет: 512349 ( 5 + 3 + 4 = 12 = 1 + 2 + 9 ) .
Второй билет: 512350 ( 5 + 1 + 2 = 8 = 3 + 5 + 0 ) .