Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
Теория вероятностей – математическая наука, которая по вероятностям одних событий позволяет оценивать вероятности других событий, связанных с первыми. Подтверждением того, что понятие «вероятность события» не имеет определения, является тот факт, что в теории вероятностей существует несколько подходов к объяснению этого понятия: Классическое определение вероятности случайного события. Вероятность события равна отношению числа благоприятных событию исходов опыта к общему числу исходов опыта.
P (A)=m/n, где - число благоприятных исходов опыта; - общее число исходов опыта. Исход опыта называется благоприятным для события, если при этом исходе опыта появилось событие . Например, если событие - появление карты красной масти, то появление туза бубей – исход, благоприятный событию .
Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
Подтверждением того, что понятие «вероятность события» не имеет определения, является тот факт, что в теории вероятностей существует несколько подходов к объяснению этого понятия:
Классическое определение вероятности случайного события.
Вероятность события равна отношению числа благоприятных событию исходов опыта к общему числу исходов опыта.
P (A)=m/n, где
- число благоприятных исходов опыта;
- общее число исходов опыта.
Исход опыта называется благоприятным для события, если при этом исходе опыта появилось событие . Например, если событие - появление карты красной масти, то появление туза бубей – исход, благоприятный событию .