- 685°. Радіус кола — R, діаметр кола D, довжина кола С. Якими даними треба доповнити таблицю 3? Таблиця 3 2 см 0,5 м R DI SHOX MRoti 4 см 0,2 дм C 6,28 мм 31,4 дм !!
Математика - одна из древнейших наук, и ее первые шаги связаны с первыми же шагами человеческого разума. Она возникла в трудовой деятельности людей. Развиваясь,
математика все точнее и точнее решала те сложные задачи, которые ставила перед человеком сама жизнь. В трудное положение в 17 веке попала торговля, все производство, экономика стран. Для мореплавателей нужны были точные карты, для купцов быстрые и правильные расчеты без обмана, для строительства станков, кораблей, храмов и жилищ – выверенные до 1мм чертежи. Производство развивалось, а неумение быстро и с большей точностью производить расчеты буквально тормозило развитие науки и техники. Жизнь ставила перед учеными задачу упростить вычисления, увеличить их точность и скорость. Этим требованиям удовлетворяли десятичные дроби.
К десятичным дробям математики пришли в разные времена в Азии и в Европе. Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II в. до н.э. там существовала десятичная система мер длины.
( слайд №2) В Древнем Китае уже пользовались десятичной системой мер,
обозначали дробь словами, используя меры длины чи, цуни, доли, порядковые, шерстинки, тончайшие, паутинки.
( слайд №3)
Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.
( слайд 4)
Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученного ал-Каши в 20-х годах XV в.
Среднеазиатский город Самарканд был в XV в. большим культурным центром. Там взнаменитой обсерватории, созданной видным астрономом Улугбеком, внуком Тамерлана, работал в 20-х годах XV в. крупный ученый того времени – Джемшид Гиясэддин ал-Каши. Это он впервые изложил учение о десятичных дробях.
В своей книге «Ключ арифметики», написанной в 1427 г., ал-Каши пишет:
«Астрономы применяют дроби, последовательными знаменателями которых являются 60 и его последовательные степени. По аналогии мы ввели дроби, в которых последовательными знаменателями являются 10 и его последовательные степени».
Он вводит специфическую для десятичных дробей запись: целая и дробная часть пишутся в одной строке. Для отделения первой части от дробной он не применяет
5
запятую, а пишет целую часть черными чернилами, дробную же – красными или отделяет целую часть от дробной вертикальной чертой.
В 1579 году десятичные дроби применяются в «Математическом каноне» французского математика Франсуа Виета (1540-1603), опубликованном в Париже. В этом сочинении, представляющем собой собрание тригонометрических таблиц, Виет решительно выступил в пользу употребления, как он выражался, тысячных и тысяч, сотых и сотен, десятых и десятков и т.д. взамен шестидесятеричной системы целых и дробей. При записи десятичных дробей Виет не придерживался какого-либо одного обозначения. Нередко он пишет как числитель, так и знаменатель, иногда отделяет цифры целой части от дробной вертикальной чертой, или же цифры целой части изображает жирным шрифтом, или, наконец, цифры дробной части дает более мелким шрифтом и подчеркивает. Обозначение дроби 2,135436 2 1579 Ф. Виет Франция
(слайд №6) Открытие десятичных дробей ал-Каши стало известно в Европе лишь спустя 300 лет после того, как эти дроби были в конце XVI в. заново открыты С. Стевиным.
( слайд №7) Фламандский инженер и ученый Симон Стевин (1548-1620), около 150 лет после ал-Каши, изложил учение о
1) (m - 4789) + 89 = 6004
m - 4789 = 6004 - 89
m - 4789 = 5915
m = 5915 + 4789
m = 10704
(10704 - 4789) + 89 = 6004
6004 = 6004
ответ: m = 10704.
2732 + (5000 - n) = 4803
5000 - n = 4803 - 2732
5000 - n = 2071
n = 5000 - 2071
n = 2929
2732 + (5000 - 2929) = 4803
4803 = 4803
ответ: n = 2929.
(p + 7245) - 3834 = 6357
р + 7245 = 6357 + 3834
р + 7245 = 10191
р = 10191 - 7245
р = 2946
(2946 + 7245) - 3834 = 6357
6357 = 6357
ответ: р = 2946.
8113 - (10101 - r) = 5207
10101 - r = 8113 - 5207
10101 - r = 2906
r = 10101 - 2906
r = 7195
8113 - (10101 - 7195) = 5207
5207 = 5207
ответ: r = 7195.
Математика - одна из древнейших наук, и ее первые шаги связаны с первыми же шагами человеческого разума. Она возникла в трудовой деятельности людей. Развиваясь,
математика все точнее и точнее решала те сложные задачи, которые ставила перед человеком сама жизнь. В трудное положение в 17 веке попала торговля, все производство, экономика стран. Для мореплавателей нужны были точные карты, для купцов быстрые и правильные расчеты без обмана, для строительства станков, кораблей, храмов и жилищ – выверенные до 1мм чертежи. Производство развивалось, а неумение быстро и с большей точностью производить расчеты буквально тормозило развитие науки и техники. Жизнь ставила перед учеными задачу упростить вычисления, увеличить их точность и скорость. Этим требованиям удовлетворяли десятичные дроби.
К десятичным дробям математики пришли в разные времена в Азии и в Европе. Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II в. до н.э. там существовала десятичная система мер длины.
( слайд №2) В Древнем Китае уже пользовались десятичной системой мер,
обозначали дробь словами, используя меры длины чи, цуни, доли, порядковые, шерстинки, тончайшие, паутинки.
( слайд №3)
Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.
( слайд 4)
Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученного ал-Каши в 20-х годах XV в.
Среднеазиатский город Самарканд был в XV в. большим культурным центром. Там взнаменитой обсерватории, созданной видным астрономом Улугбеком, внуком Тамерлана, работал в 20-х годах XV в. крупный ученый того времени – Джемшид Гиясэддин ал-Каши. Это он впервые изложил учение о десятичных дробях.
В своей книге «Ключ арифметики», написанной в 1427 г., ал-Каши пишет:
«Астрономы применяют дроби, последовательными знаменателями которых являются 60 и его последовательные степени. По аналогии мы ввели дроби, в которых последовательными знаменателями являются 10 и его последовательные степени».
Он вводит специфическую для десятичных дробей запись: целая и дробная часть пишутся в одной строке. Для отделения первой части от дробной он не применяет
5
запятую, а пишет целую часть черными чернилами, дробную же – красными или отделяет целую часть от дробной вертикальной чертой.
В 1579 году десятичные дроби применяются в «Математическом каноне» французского математика Франсуа Виета (1540-1603), опубликованном в Париже. В этом сочинении, представляющем собой собрание тригонометрических таблиц, Виет решительно выступил в пользу употребления, как он выражался, тысячных и тысяч, сотых и сотен, десятых и десятков и т.д. взамен шестидесятеричной системы целых и дробей. При записи десятичных дробей Виет не придерживался какого-либо одного обозначения. Нередко он пишет как числитель, так и знаменатель, иногда отделяет цифры целой части от дробной вертикальной чертой, или же цифры целой части изображает жирным шрифтом, или, наконец, цифры дробной части дает более мелким шрифтом и подчеркивает. Обозначение дроби 2,135436 2 1579 Ф. Виет Франция
(слайд №6) Открытие десятичных дробей ал-Каши стало известно в Европе лишь спустя 300 лет после того, как эти дроби были в конце XVI в. заново открыты С. Стевиным.
( слайд №7) Фламандский инженер и ученый Симон Стевин (1548-1620), около 150 лет после ал-Каши, изложил учение о
Пошаговое объяснение: