Сначала найдём производную: y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем: 4x^3-6x^2+2x=0 x(4x^2-6x+2)=0 x=0; 4x^2-6x+2=0 2x^2-3x+1=0 D=(-3)^2-4*2*1=1 x1=1 x2=0.5 Дальше строим ось X и отмечаем точки в порядке возрастания. Надеюсь вам знаком метод интервалов. в результате получается, что Xмин = 0 и 1, а Xмах=0,5 Теперь подставляем в исходное уравнение (y=x^2(1-x)^2) Yнаим=Y(0)=0^2(1-0)^2=0 Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625 ответ: Yнаим=0; Yнаиб=0,0625
1) во-первых, нужно изобразить (с этим, я полагаю, вы справитесь самостоятельно) • отметим, что медиана an делит сторону bc пополам по определению 2) во-вторых, так как я глуп и не вижу иных способов решения, для начала вычислим все стороны треугольника abc посредством формулы расстояния между двумя точками ○ bc = √((2 - (-4))² + (2 - 3)²) = √(37) ○ ac = √((2 - 1)² + (2 - 1)²) = √2 ○ ab = √ - 1)² + (3 - 1)²) = √(29) 3) теперь найдем косинус угла acb по теореме косинусов. обозначим его α • 29 = 37 + 2 - 2√(37*2) cosα, cosα = 5/√(74). 4) искомую медиану na найдем также через теорему косинусов • na = √(2 + (37/4) - √(37*2) cosα), na = 2.5
y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x
Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем:
4x^3-6x^2+2x=0
x(4x^2-6x+2)=0
x=0; 4x^2-6x+2=0
2x^2-3x+1=0
D=(-3)^2-4*2*1=1
x1=1
x2=0.5
Дальше строим ось X и отмечаем точки в порядке возрастания.
Надеюсь вам знаком метод интервалов.
в результате получается, что Xмин = 0 и 1, а Xмах=0,5
Теперь подставляем в исходное уравнение (y=x^2(1-x)^2)
Yнаим=Y(0)=0^2(1-0)^2=0
Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625
ответ: Yнаим=0; Yнаиб=0,0625