Площадь квадрата = 1 * 1 = 1, т.е. целое число, которое сначала разделим пополам и получим две части, равные 1/2; затем одну из 1/2 еще разделим пополам и получим одну 1/2 и две части, равные 1/4 и т.д. В итоге получили: по одной - 1/2, 1/4, 1/8, 1/16, 1/32 и две 1/64 части, значит, чтобы доказать, что сумма 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 меньше 1, достаточно из целой площади квадрата вычесть одну из двух 1/64 частей 1 = 64/64 1/2 + 1/4 + 1/8 + 1/6 + 1/32 + 1/64 = 1 - 1/64 = 64/64 - 1/64 = 63/64 63/64 < 1, что и требовалось доказать
1 = 64/64
1/2 + 1/4 + 1/8 + 1/6 + 1/32 + 1/64 = 1 - 1/64 = 64/64 - 1/64 = 63/64
63/64 < 1, что и требовалось доказать
сторона треугольника a = R* корень(3) = основание треугольника
Прямая, параллельная стороне треугольника, делит высоту, проведенную к этой стороне, в отношении 3:1, считая от основания
отрезок этой прямой, заключенной между сторонами треугольника
является основанием подобного треугольника
коэффициент подобия 1:4
Длина отрезка этой прямой, заключенной между сторонами треугольника, равна b = a/4 = R* корень(3)/4 = 2√6 * корень(3)/4 = 3√2/2 = 3 / √2