Антар айында екі бригада жалпы 1080 өнім дайындады. ақпан айында бірінші бригада жұмыс өнімін 15%-ға,ал екінші бригада 12% артық орындап жалпы 1224 өнім дайындады.ақпан айында әр бригада қанша өнім жасады?
В болотах, где накапливаются большие толщи растительных остатков, насыщенных водой, нет или почти нет условий для проникновения кислорода воздуха, особенно в той их части, которая расположена глубже поверхности болота и захоронена накапливающимися осадками. В этом случае идёт очень медленное разложение и преобразование органического вещества при многочисленных микроорганизмов (бактерий и низших грибов) , и часть его сохраняется в торфе почти неизменной. Одновременно при разложении растительных остатков образуются гумусовые вещества. Этот медленный процесс гниения клетчатки, протекающий без доступа воздуха и ведущий к образованию торфа, называют гумификацией
В начале столетия великий французский архитектор Корбюзье как-то воскликнул: «Все вокруг геометрия!». Сегодня уже в начале 21-го столетия мы можем повторить это восклицание с еще большим изумлением. В самом деле, посмотрите вокруг — всюду геометрия! Геометрические знания и умения, геометрическая культура и развитие являются сегодня профессионально значимыми для многих современных специальностей, для дизайнеров и конструкторов, для рабочих и ученых. Важно, что геометрия есть феномен общечеловеческой культуры. Человек не может по настоящему развиться культурно и духовно, если он не изучал в школе геометрию; геометрия возникла не только из практических, но и из духовных потребностей человека.
Геометрия - это целый мир, который окружает нас с самого рождения. Ведь все, что мы видим вокруг, так или иначе относится к геометрии, ничто не ускользает от ее внимательного взгляда. Геометрия человеку идти по миру с широко открытыми глазами, учит внимательно смотреть вокруг и видеть красоту обычных вещей, смотреть и думать, думать и делать выводы.
“Математик так же, как художник или поэт, создаёт узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей… Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идея так же, как цвета или слова, должны гармонически соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики”.
Актуальность выбранной темы
На уроках геометрии в этом году мы узнали определения, признаки, свойства различных многоугольников. Многие окружающие нас предметы имеют форму, похожую на уже знакомые нам геометрические фигуры. Поверхности кирпича, куска мыла состоят из шести граней. Комнаты, шкафы, ящики, столы, железобетонные блоки напоминают своей формой прямоугольный параллелепипед, грани у которых - знакомые нам четырехугольники.
Многоугольники, несомненно, обладают красотой и используются в нашей жизни очень обширно. Многоугольники важны для нас, без них мы бы не смогли строить такие прекрасные здания, скульптуры, фрески, графики и многое другое. Математика владеет не только истиной, но и высшей красотой – отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которая свойственна лишь величайшим образцам искусства. Интерес к теме «Многоугольники» у меня появился после урока – игры, где учительница представила нам задачу – сказку о выборе короля.
Собрались все многоугольники на лесной поляне и стали обсуждать вопрос о выборе своего короля. Долго спорили и никак не могли придти к единому мнению. И вот один старый параллелограмм сказал: “Давайте все отправимся в царство многоугольников. Кто первым придет, тот и будет королем” Все согласились. Рано утром отправились все в далекое путешествие. На пути путешественников повстречалась река, которая сказала: “Переплывут меня только те, у кого диагонали пересекаются и точкой пересечения делятся пополам” Часть фигур осталась на берегу, остальные благополучно переплыли и отправились дальше. На пути им повстречалась высокая гора, которая сказала, что даст пройти только тем, у кого диагонали равны. Несколько путешественников осталась у горы, остальные продолжили путь. Дошли до большого обрыва, где был узкий мост. Мост сказал, что пропустит тех, у кого диагонали пересекаются под прямым углом. По мосту только один многоугольник, который первым добрался до царства и был провозглашен королем. Вот и выбрали короля. Я тоже выбрала себе тему для исследовательской работы.
Цель исследовательской работы:Практическое применение многоугольников в окружающем нас мире.
Задачи: 1. Провести литературный обзор по теме. 2. Показать практическое применение правильных многоугольников в окружающем нас мире.
Проблемный вопрос: Какое место в нашей жизни занимают многоугольники?
Методы исследовательской работы: Сбор и структурирование собранного материала на различных этапах исследования. Выполнение рисунков, чертежей; фотографий. Предполагаемое практическое применение: Возможность применения полученных знаний в повседневной жизни, при изучении тем на других предметах. Знакомство и обработка литературных материалов, данных из Интернета, встреча с жителями села.
В начале столетия великий французский архитектор Корбюзье как-то воскликнул: «Все вокруг геометрия!». Сегодня уже в начале 21-го столетия мы можем повторить это восклицание с еще большим изумлением. В самом деле, посмотрите вокруг — всюду геометрия! Геометрические знания и умения, геометрическая культура и развитие являются сегодня профессионально значимыми для многих современных специальностей, для дизайнеров и конструкторов, для рабочих и ученых. Важно, что геометрия есть феномен общечеловеческой культуры. Человек не может по настоящему развиться культурно и духовно, если он не изучал в школе геометрию; геометрия возникла не только из практических, но и из духовных потребностей человека.
Геометрия - это целый мир, который окружает нас с самого рождения. Ведь все, что мы видим вокруг, так или иначе относится к геометрии, ничто не ускользает от ее внимательного взгляда. Геометрия человеку идти по миру с широко открытыми глазами, учит внимательно смотреть вокруг и видеть красоту обычных вещей, смотреть и думать, думать и делать выводы.
“Математик так же, как художник или поэт, создаёт узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей… Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идея так же, как цвета или слова, должны гармонически соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики”.
Актуальность выбранной темы
На уроках геометрии в этом году мы узнали определения, признаки, свойства различных многоугольников. Многие окружающие нас предметы имеют форму, похожую на уже знакомые нам геометрические фигуры. Поверхности кирпича, куска мыла состоят из шести граней. Комнаты, шкафы, ящики, столы, железобетонные блоки напоминают своей формой прямоугольный параллелепипед, грани у которых - знакомые нам четырехугольники.
Многоугольники, несомненно, обладают красотой и используются в нашей жизни очень обширно. Многоугольники важны для нас, без них мы бы не смогли строить такие прекрасные здания, скульптуры, фрески, графики и многое другое. Математика владеет не только истиной, но и высшей красотой – отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которая свойственна лишь величайшим образцам искусства. Интерес к теме «Многоугольники» у меня появился после урока – игры, где учительница представила нам задачу – сказку о выборе короля.
Собрались все многоугольники на лесной поляне и стали обсуждать вопрос о выборе своего короля. Долго спорили и никак не могли придти к единому мнению. И вот один старый параллелограмм сказал: “Давайте все отправимся в царство многоугольников. Кто первым придет, тот и будет королем” Все согласились. Рано утром отправились все в далекое путешествие. На пути путешественников повстречалась река, которая сказала: “Переплывут меня только те, у кого диагонали пересекаются и точкой пересечения делятся пополам” Часть фигур осталась на берегу, остальные благополучно переплыли и отправились дальше. На пути им повстречалась высокая гора, которая сказала, что даст пройти только тем, у кого диагонали равны. Несколько путешественников осталась у горы, остальные продолжили путь. Дошли до большого обрыва, где был узкий мост. Мост сказал, что пропустит тех, у кого диагонали пересекаются под прямым углом. По мосту только один многоугольник, который первым добрался до царства и был провозглашен королем. Вот и выбрали короля. Я тоже выбрала себе тему для исследовательской работы.
Цель исследовательской работы:Практическое применение многоугольников в окружающем нас мире.
Задачи: 1. Провести литературный обзор по теме. 2. Показать практическое применение правильных многоугольников в окружающем нас мире.
Проблемный вопрос: Какое место в нашей жизни занимают многоугольники?
Методы исследовательской работы: Сбор и структурирование собранного материала на различных этапах исследования. Выполнение рисунков, чертежей; фотографий. Предполагаемое практическое применение: Возможность применения полученных знаний в повседневной жизни, при изучении тем на других предметах. Знакомство и обработка литературных материалов, данных из Интернета, встреча с жителями села.