Скрорость теплохода примем за x(км/час), а скорость течения - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
Из второго уравнения выражаем y и подставляем в первое:
Далее, решаем первое уравнение относительно x:
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.
x = 1.52
y = 2.78
Пошаговое объяснение:
1) Решаем относительно x, перенеся y в правую часть: x = 4,3 - y
2) Подставим данное значение в уравнение 3x - 2y=-1: 3(4.3-y)-2y=-1
3) Решить уравнение относительно y:
1) Распределить 3 через скобки: 12.9 - 3y - 2y = -1
2) Привести подобные члены: 12.9 - 5y = -1
3) Перенести 12,9 в правую часть: -5y = -1-12.9
4) Вычислить разность: -5y = -13.9
5) Разделить обе стороны уравнения на -5: y = 2.78
4) Подставить данное значение y в уравнение x = 4.3 - y: x = 4.3-2.78
5)Решить уравнение относительно x: x = 1.52
Скрорость теплохода примем за x(км/час), а скорость течения - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
Из второго уравнения выражаем y и подставляем в первое:
Далее, решаем первое уравнение относительно x:
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.