Числа 0 1 2 3 4 5 6 7 8 9 записаны по кругу.за один ход разрешается прибавить к двум соседним числам одно и тоже число.можно ли за несколько ходов получить десять ! 20
Пусть заданные числа каким-то образом проставлены по кругу и a, b, c, d – четыре соседних числа. Поменяем местами числа a >и c. Исследуем, как изменилась сумма рассматриваемых в задаче разностей. Для расстановки a, b, c, d она равна , а для расстановки a , c, b , d – , где – сумма разностей для оставшихся чисел. Изменение общей суммы Если b >и c имеют одинаковую четность, то будет представлять собой сумму двух четных чисел, а если они разной четности, то является суммой двух нечетных чисел, но в любом случае четно. Следовательно, мы получили инвариант – при перестановке двух соседних чисел четность суммы разностей не изменится. Любую расстановку заданных чисел по кругу можно получить, переставляя несколько раз соседние числа, тем самым мы доказали, что для любой расстановки заданных чисел сумма разностей имеет одну и ту же четность. Рассмотрев произвольную расстановку чисел (от одного до девяти), мы получим, что сумма разностей четна, и, значит, требуемая в задаче расстановка невозможно.
Пусть заданные числа каким-то образом проставлены по кругу и a, b, c, d – четыре соседних числа. Поменяем местами числа a >и c. Исследуем, как изменилась сумма рассматриваемых в задаче разностей. Для расстановки a, b, c, d она равна , а для расстановки a , c, b , d – , где – сумма разностей для оставшихся чисел. Изменение общей суммы Если b >и c имеют одинаковую четность, то будет представлять собой сумму двух четных чисел, а если они разной четности, то является суммой двух нечетных чисел, но в любом случае четно. Следовательно, мы получили инвариант – при перестановке двух соседних чисел четность суммы разностей не изменится. Любую расстановку заданных чисел по кругу можно получить, переставляя несколько раз соседние числа, тем самым мы доказали, что для любой расстановки заданных чисел сумма разностей имеет одну и ту же четность. Рассмотрев произвольную расстановку чисел (от одного до девяти), мы получим, что сумма разностей четна, и, значит, требуемая в задаче расстановка невозможно.
Пошаговое объяснение: