В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Veroni4ka7090
Veroni4ka7090
16.06.2022 19:36 •  Математика

Числовые последовательности

Показать ответ
Ответ:
alekseislepsov2008
alekseislepsov2008
15.08.2022 21:43
№1
Дано:
а=6 см
S-?
P-?
Решение
Р=а×4
6×4=24 см периметр квадрата
S=a²или S=a×a (*не знаю по какой формуле вы решаете)
6²=36 или 6×6=36 см²-площадь квадрата
ответ: S=36 см², Р=24 см

№2
Дано:
а=6 см
Р=18 см
S-?
Решение:
Р=(а+в)×2, в=Р÷2-а
18÷2-6=9-6=3 см ширина прямоугольника
S=а×в
6×3=18 см² площадь прямоугольника.
ответ:S=18 см²
S ><
Дано
а кв.- 4 см
а прям-6 см
в прям-2 см
Sкв >, < S прям-?
Решение:
4×4=16 см² S квадрата
6×2=12 см² S прямоугольника
16-12=4 см² S квадрата >S прямоугольника
ответ:  S квадрата >S прямоугольника на 4 см²
0,0(0 оценок)
Ответ:
nataliakonstan1
nataliakonstan1
06.05.2023 18:56

Пошаговое объяснение:

Интегрирование по частям

Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение

Интегрирование по частям

называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.

Решение онлайн

Видеоинструкция

С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.

infinity

pi

1/2*(x+1)*exp(x)

? dx

ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн

Применение метода интегрирования по частям

В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:

Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).

Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).

Типовые разложения по частям

Вид интеграла Разложения на части

∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx

∫ln(P(x))dx U=ln(P(x)); dV=dx

∫arcsin(ax)dx U=arcsin(ax); dV=dx

U=ln(x); dV=dx/x

При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx,  и   Вряд ли интеграл ∫x2exdx можно считать проще исходного.

Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.

Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.

ПРИМЕР №1. Вычислить ∫xexdx.

Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.

ПРИМЕР №2. Вычислить ∫xcos(x)dx.

Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C

ПРИМЕР №3. ∫(3x+4)cos(x)dx

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота