Діагональ рівнобічної трапеції перпендикулярна до бічної сторони. А основи дорівнюють 10см і 26 см. знайдіть висоту, бічну сторону і діагональ трапеції
Графически неравенство x^2+6x-18< 0 представляет собой ту часть параболы у = x^2+6x-18, которая расположена ниже оси ординат(это ось ох).поэтому находим точки пересечения этой параболы с осью ох - в этих точках значение у = 0: х² + 6х - 18 = 0 квадратное уравнение, решаем относительно x: ищем дискриминант: d=6^2-4*1*(-18)=36-4*(-18)=*18)=)=36+72=108; дискриминант больше 0, уравнение имеет 2 корня: x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615; x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615.отсюда ответ:
Так как призма прямая, ее высотой является боковое ребро.
Проведем ВK⊥AC. ВK - проекция В₁К на плоскость основания, значит
В₁К⊥АС по теореме о трех перпендикулярах, тогда
∠В₁КВ = 60° - линейный угол двугранного угла между плоскостями (АВ₁С) и (АВС).
Из прямоугольного треугольника АВС по теореме Пифагора найдем АС:
АС = √(АВ² + ВС²) = √(48 + 16) = √64 = 8 см
Найдем ВК - высоту прямоугольного треугольника АВС :
Sabc = 1/2 AC · BK = 1/2 AB · BC
BK = AB ·BC / AC = 4√3 · 4 / 8 = 2√3 см
ΔВВ₁К: tg∠B₁KB = BB₁ / BK
BB₁ = BK · tg60° = 2√3 · √3 = 6 см
Подробнее - на -
Пошаговое объяснение: