Если сумма противоположных углов в четырехугольнике равна 180, то вокруг него можно описать окружность. Проверим, угол АВС + угол ADC = 124 + 56 = 180. Значит, вокруг четырехугольника ABCD можно вписать окружность.
б)
Пусть диагонали четырехугольника ABCD AB и CD пересекаются в точке О. Нужно найти угол ВОА. Рассмотрим треугольник ACD. Сумма углов в треугольнике равна 180 градусов, значит угол ACD = 180 - угол CAD - угол ADC = 180 - 54 - 56 = 70 градусов. Так как вокруг четырехугольника ABCD можно вписать окружность, то угол BAD + угол BCD = 180
угол BAC + угол CAD + угол BCA + угол ACD = 180
32 + 54 + угол ВСА + 70 = 180
угол ВСА = 180 - 32 - 54 - 70
угол ВСА = 24
Угол ВСА = углу BDA, так как эти углы опираются на одну и ту же дугу, значит угол BDA = 24
Угол ABD = углу ACD, так как эти углы опираются на одну и ту же дугу, значит угол ABD = 70
1 Проведите прямую, обозначьте ее буквой а и отметьте точки A и B, лежащие на этой прямой, и точки Р, Q и R, не лежащие на ней. Опишите взаимное расположение точек А, В, Р, Q, R и прямой а, используя символы ∈ и ∉.
2 Отметьте три точки A, B и C, не лежащие на одной прямой, и проведите прямые AB, BC и CA.
3 Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
4 Отметьте точки A, B, C, D так, чтобы точки A, B, C лежали на одной прямой, а точка D не лежала на ней. Через каждые две точки проведите прямую. Сколько получилось прямых?
5 Проведите прямую а и отметьте на ней точки A и B. Отметьте: а) точки М и N, лежащие на отрезке АВ; б) точки Р и Q, лежащие на прямой а, но не лежащие на отрезке АВ; в) точки R и S, не лежащие на прямой а.
6 Проведите прямую и отметьте на ней три точки. Сколько отрезков получилось на прямой?
7 На рисунке 10 изображена прямая, на ней отмечены точки А, В, С и D. Назовите все отрезки: а) на которых лежит точка С; б) на которых не лежит точка B.
а)
Если сумма противоположных углов в четырехугольнике равна 180, то вокруг него можно описать окружность. Проверим, угол АВС + угол ADC = 124 + 56 = 180. Значит, вокруг четырехугольника ABCD можно вписать окружность.
б)
Пусть диагонали четырехугольника ABCD AB и CD пересекаются в точке О. Нужно найти угол ВОА. Рассмотрим треугольник ACD. Сумма углов в треугольнике равна 180 градусов, значит угол ACD = 180 - угол CAD - угол ADC = 180 - 54 - 56 = 70 градусов. Так как вокруг четырехугольника ABCD можно вписать окружность, то угол BAD + угол BCD = 180
угол BAC + угол CAD + угол BCA + угол ACD = 180
32 + 54 + угол ВСА + 70 = 180
угол ВСА = 180 - 32 - 54 - 70
угол ВСА = 24
Угол ВСА = углу BDA, так как эти углы опираются на одну и ту же дугу, значит угол BDA = 24
Угол ABD = углу ACD, так как эти углы опираются на одну и ту же дугу, значит угол ABD = 70
Рассмотрим треугольник ABD. Найдем угол ВОА. Угол ВОА = 180 - угол ОВА - угол ОАВ = 180 - 32 - 70 = 78 градусов
ответ: 78 градусов
Пошаговое объяснение:
только не бань
Пошаговое объяснение:
1 Проведите прямую, обозначьте ее буквой а и отметьте точки A и B, лежащие на этой прямой, и точки Р, Q и R, не лежащие на ней. Опишите взаимное расположение точек А, В, Р, Q, R и прямой а, используя символы ∈ и ∉.
2 Отметьте три точки A, B и C, не лежащие на одной прямой, и проведите прямые AB, BC и CA.
3 Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
4 Отметьте точки A, B, C, D так, чтобы точки A, B, C лежали на одной прямой, а точка D не лежала на ней. Через каждые две точки проведите прямую. Сколько получилось прямых?
5 Проведите прямую а и отметьте на ней точки A и B. Отметьте: а) точки М и N, лежащие на отрезке АВ; б) точки Р и Q, лежащие на прямой а, но не лежащие на отрезке АВ; в) точки R и S, не лежащие на прямой а.
6 Проведите прямую и отметьте на ней три точки. Сколько отрезков получилось на прямой?
7 На рисунке 10 изображена прямая, на ней отмечены точки А, В, С и D. Назовите все отрезки: а) на которых лежит точка С; б) на которых не лежит точка B.