Дан куб ABCDA1B1C1D1 с ребром 12. Постройте сечение куба плоскостью A1BC. Постройте сечение куба плоскостью, проходящей через точку M параллельно плоскости A1BC и найдите его периметр, если M принадлежит D1C1, D1M:MC1=1:2
1) делим длину столба на длину части. Переводим смешанное число в неправильную дробь Пример 3 7/9=(3*9+7)/9=34/9 Поскольку это деление простых дробей, то "переворачиваем" делитель и далее умножаем числитель на числитель, а знаменатель на знаменатель 34/9:1/9=34/9*9=34 2) У правильной дроби числитель всегда меньше знаменателя. Составляем неравенство 2х-5<11 2x<16 x<8
3) Число делится на 5, если в разряде единиц у него 5 или 0. Изданного набора наибольшим будет 9725. Число делится на 2, если оно четное, т.е в разряде единиц стоит четное число. Это 2 Наименьшим будет 5792
11/84 = 0,130952381
Пошаговое объяснение:
5/21 - 3/28 = 4 * 5 - 3 * 3 / 84 = 11/84
5/21 - 3/28 -- приводим к общему знаминателю, например на 84, т.к. и 21 и 28 делятся на 84
Чтобы привести к общему знаминателю, надо и числитель домножить на то число, во сколько раз увеличивается знаминатель, например:
21 * 4 = 84 - в 4 раза нужно увеличить и числитель и знаминатель
28 * 3 = 84 - тоже самое, только в 3 раза нужно увеличить
Итак получается:5/21 - 3/28 = 5*4/84 - 3*3/84 = 20/84 - 9/84 = 11/84
Как - то так (не умею обяснять), если есть вопросы, то в коменты)
Удачи!!)
Пример 3 7/9=(3*9+7)/9=34/9
Поскольку это деление простых дробей, то "переворачиваем" делитель и далее умножаем числитель на числитель, а знаменатель на знаменатель
34/9:1/9=34/9*9=34
2) У правильной дроби числитель всегда меньше знаменателя.
Составляем неравенство 2х-5<11
2x<16
x<8
3) Число делится на 5, если в разряде единиц у него 5 или 0.
Изданного набора наибольшим будет 9725.
Число делится на 2, если оно четное, т.е в разряде единиц стоит четное число. Это 2 Наименьшим будет 5792