Смешной ты) Решение такое наверное: 7/15 - линейка тогда 8/15 клетка 3/4 - фиолетовые тогда 1/4 - зеленые Доли тетрадей от общего количества: 7/15 * 3/4 = 7/20 - фиолетовые в линейку 7/15 * 1/4 = 7/60 - зеленые в линейку 8/15 * 3/4 = 2/5 - фиолетовые в клетку 8/15 * 1/4 = 2/15 - зеленые в клетку
Приводим все к одному знаменателю, чтобы узнать каких было сколько в штуках: 7/20 = 21/60 - фиол в лин 7/60 = 7/60 - зел в лин 2/5 = 24/60 - фиол в кл 2/15 = 8/60 - зел в кл Всего 21/60+7/60+24/60+8/60 = 60/60 - все сходится. Всего было 60 тетрадей. Числитель показывает сколько было каких (в штуках). ответ: доля фиолетовых в линейку от всех = 7/20. Количество зеленых в линейку было 7 штук.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
Решение такое наверное:
7/15 - линейка
тогда 8/15 клетка
3/4 - фиолетовые
тогда 1/4 - зеленые
Доли тетрадей от общего количества:
7/15 * 3/4 = 7/20 - фиолетовые в линейку
7/15 * 1/4 = 7/60 - зеленые в линейку
8/15 * 3/4 = 2/5 - фиолетовые в клетку
8/15 * 1/4 = 2/15 - зеленые в клетку
Приводим все к одному знаменателю, чтобы узнать каких было сколько в штуках:
7/20 = 21/60 - фиол в лин
7/60 = 7/60 - зел в лин
2/5 = 24/60 - фиол в кл
2/15 = 8/60 - зел в кл
Всего 21/60+7/60+24/60+8/60 = 60/60 - все сходится.
Всего было 60 тетрадей. Числитель показывает сколько было каких (в штуках).
ответ: доля фиолетовых в линейку от всех = 7/20. Количество зеленых в линейку было 7 штук.
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.