Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды
По больше объяснений Следить Отметить нарушение Missvolodya 18.03.2011
ответ
Проверено экспертом
ответ дан
KuOV
KuOV
Пирамида правильная, значит в основании квадрат, боковые грани - равные равнобедренные треугольники, высота прецируется в точку пересечения диагоналей квадрата.
Пусть Н - середина CD. Тогда SH - медиана и высота равнобедренного треугольника SCD, ОН - медиана и высота равнобедренного треугольника OCD.
SH⊥CD, OH⊥CD, ⇒∠SHO = 60° - линейный угол двугранного угла между боковой гранью и основанием.
ОН = AD/2 = 6/2 = 3 cм как средняя линия ΔACD.
ΔSOH: ∠SOH = 90°, cos∠SHO = OH/SH
SH = OH / cos∠SHO = 3 / (1/2) = 6 см
ΔSHC: ∠SHC = 90°, SH = 6 см, HС = 3 см, по теореме Пифагора:
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение:
1
10 - 11 классы Геометрия 21 балл
В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды
По больше объяснений Следить Отметить нарушение Missvolodya 18.03.2011
ответ
Проверено экспертом
ответ дан
KuOV
KuOV
Пирамида правильная, значит в основании квадрат, боковые грани - равные равнобедренные треугольники, высота прецируется в точку пересечения диагоналей квадрата.
Пусть Н - середина CD. Тогда SH - медиана и высота равнобедренного треугольника SCD, ОН - медиана и высота равнобедренного треугольника OCD.
SH⊥CD, OH⊥CD, ⇒∠SHO = 60° - линейный угол двугранного угла между боковой гранью и основанием.
ОН = AD/2 = 6/2 = 3 cм как средняя линия ΔACD.
ΔSOH: ∠SOH = 90°, cos∠SHO = OH/SH
SH = OH / cos∠SHO = 3 / (1/2) = 6 см
ΔSHC: ∠SHC = 90°, SH = 6 см, HС = 3 см, по теореме Пифагора:
SC = √(SH²+ HC²) = √(36 + 9) = √45 = 3√5 см