У наше выражение. Раскроем скобки и приведем подобные слагаемые. Чтобы раскрыть скобки умножим множители возле скобок и по очереди слагаемые в скобках.
Подставим в полученное выражение значение переменной у = 2 4/13.
Переведем все наши числа в дроби для вычислений. Чтобы перемножить дроби, умножим их числители и отдельно знаменатели. У Чтобы вычесть дроби с одинаковыми знаменателями, вычтем их числители, а знаменатель оставим общим.
У наше выражение. Раскроем скобки и приведем подобные слагаемые. Чтобы раскрыть скобки умножим множители возле скобок и по очереди слагаемые в скобках.
0,6 (4у - 18) - 0,4 (5 - 7у) = 0.6 * 4y - 0.6 * 18 - 0.4 * 5 - 0.4 * (- 7y) = 2.4y - 10.8 - 2 + 2.8y = y (2.4 + 2.8) - 12.8 = 5.2y - 12.8.
Подставим в полученное выражение значение переменной у = 2 4/13.
Переведем все наши числа в дроби для вычислений. Чтобы перемножить дроби, умножим их числители и отдельно знаменатели. У Чтобы вычесть дроби с одинаковыми знаменателями, вычтем их числители, а знаменатель оставим общим.
5.2y - 12.8 = 5.2 * 2 4/13 - 12.8 = 52/10 * (2 * 13 + 4)/13 - 128/10 = 52/10 * 30/13 - 128/10 = 120/10 - 128/10 = (120 - 128)/10 = - 8/10 = - 0.8.
ответ: - 0,8.
Пошаговое объяснение:
В решении.
Пошаговое объяснение:
Двое рабочих вместе делают всю работу за 10 дней. За сколько дней
выполнит всю работу каждый из них, если первый работает в два раза
быстрее второго?
х - производительность второго рабочего.
2х - производительность первого рабочего.
1 - вся работа.
х + 2х = 3х - общая производительность двух рабочих.
По условию задачи уравнение:
1 : 3х = 10
1 = 30х
х = 1/30 - производительность второго рабочего.
1/30 * 2 = 1/15 - производительность первого рабочего.
1 : 1/30 = 30 (дней) - время второго рабочего.
1 : 1/15 = 15 (дней) - время первого рабочего.