Даны точки: B(42;−37), K(−37;42), P(42;42), R(−37;−24). Определи, которая из данных точек находится в III квадранте координатной плоскости: B P K R РЕБЯТ
Если точка равноудалена от сторон угла, то она лежит на биссектрисе угла. А биссектриса угла при вершине равнобедренного треугольника является одновременно высотой и медианой. Биссектриса делит угол при вершине пополам. Рассмотрим треугольник МВК, где К - точка на стороне ВС. Он прямоугольный с катетом МК=1 и углом при вершине В=60. Из прямоугольного треугольника находим МВ=(2 корней из 3):3. Значит вся высота (медиана, биссектриса) при вершине В равна 2 корней из 3 + (2 корней из 3):2 = (8 корней из 3):3. Из большого прямоугольного треугольника ВДС надодим ДС по тангенсу угла в 30 градусов. ДС = (8 корней из 3):3 разделить на (корень из 3):3 = 8.
Из большого прямоугольного треугольника ВДС надодим ДС по тангенсу угла в 30 градусов.
ДС = (8 корней из 3):3 разделить на (корень из 3):3 = 8.
Половина основания равно 8. Всё основание АM = 16
Пошаговое объяснение: Дано: ∠РАО=30°, h=PO=2 м. Найти а) а)Площадь основания S
б) площадь боковой поверхности S'
в) площадь полной поверхности S''
г) объем конуса V
Решение: 1) из ΔРАО-прямоугольного имеем РО/РА=Sin30° ⇒ PA=PO/Sin30° ⇒ l=PA=2/(1/2)=4 (дм) 2) R=OA, по т. Пифагора ОА²=PA²- PO²= 4² - 2²=16- 4 = 12, ⇒ OA=√12= 2√3, ⇒ R=2√3 (дм) 3) а)Площадь основания S=πR² = π·12=12π (дм²)
б) площадь боковой поверхности S' = πrl = π·2√3·4= 8π√3 (дм²)
в) площадь полной поверхности S'' =S + S'=πR²+ πRl= 12π+8π√3=4π(3+2√3) дм²
г) объем конуса V = 1/3 ·S·h= 1/3 · 12π · 2= 8π (дм³)