В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
syslik7773
syslik7773
14.03.2022 04:29 •  Математика

длина стороны прямоугольника параллелепипеда равна 3 3/4 м а ширина в 1 7/8 раза меньше длины найди высоту прямоугольника параллелепипеда если его объем равен 17 3/5 в кубе

Показать ответ
Ответ:
bitmobru
bitmobru
10.12.2021 10:56

Пошаговое объяснение:

A= \left[\begin{array}{ccc}\frac{1}{2} &\frac{1}{4} &\frac{1}{3} \\\frac{1}{3} &\frac{1}{2} &\frac{1}{3} \\a_{31}&a_{32}&a_{33}\end{array}\right] .\\

Так как в данной задаче сумма каждого столбца

должна быть равна 1,      ⇒

a_{31}=1-(\frac{1}{2} +\frac{1}{3} )=1-\frac{5}{6} =\frac{1}{6}\\ a_{32}=1-(\frac{1}{4}+\frac{1}{2})=1-\frac{3}{4}=\frac{1}{4} \\ a_{33}=1-(\frac{1}{3}+\frac{1}{3} ) =1-\frac{2}{3} =\frac{1}{3}

Матрица приобретает вид:

A= \left[\begin{array}{ccc}\frac{1}{2} &\frac{1}{4} &\frac{1}{3} \\\frac{1}{3} &\frac{1}{2} &\frac{1}{3} \\\frac{1}{6} &\frac{1}{4} &\frac{1}{3} \end{array}\right] .\\

Найдём собственный вектор х'', отвечающий

собственному значению λ=1.

Для этого решим уравнение: (А-Е)*х''=0''.

Найдём А-Е:

A-E= \left[\begin{array}{ccc}\frac{1}{2} &\frac{1}{4} &\frac{1}{3} \\\frac{1}{3} &\frac{1}{2} &\frac{1}{3} \\\frac{1}{6} &\frac{1}{4} &\frac{1}{3} \end{array}\right] -\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]= A= \left[\begin{array}{ccc}-\frac{1}{2} &\frac{1}{4} &\frac{1}{3} \\\frac{1}{3} &-\frac{1}{2} &\frac{1}{3} \\\frac{1}{6} &\frac{1}{4} &-\frac{2}{3} \end{array}\right] .\\

Тогда еравнение  (А-Е)*х''=0'' можно записать в виде следующей однородной системы линейных алгебраических

уравнений:

-\frac{1}{2} x_1+\frac{1}{2}x_2+\frac{1}{3} x_3=0\\ \frac{1}{3}x_1-\frac{1}{x}x_2+\frac{1}{3} x_3 =0\\\frac{1}{6}x_1+\frac{1}{4} x_2-\frac{2}{3}x_3=0.

Выполним преобразования.

Умножим первое уравнение на -6, второе уравнение на 3,

а третье уравненик на 12:

3x_1-3x_2-2x_3=0\\2x_1-3x_2+2x_3=0\\2x_1+3x_2-8x_3-0.

Решим эту систему методом Гаусса.

Запишем расширенную матрицу системы:

\left[\begin{array}{ccc}3&-3&-2|0\\2&-3&2}|0\\2&3&-8|0\end{array}\right].

Разделим вторую строку на 2:

\left[\begin{array}{ccc}3&-3&-2|0\\1&-1,5&1|0\\2&3&-8|0\end{array}\right].

Поменяем местами первую и вторую строки:

\left[\begin{array}{ccc}1&-1,5&1|0\\3&-3&-2|0\\2&3&-8|0\end{array}\right].

Прибавим ко второй строке первую, умноженную на -3:

\left[\begin{array}{ccc}1&-1,5&1|0\\0&1,5&-5|0\\2&3&-8|0\end{array}\right].

Прибавим к третьей строке первую, умноженную на -2:

\left[\begin{array}{ccc}1&-1,5&1|0\\0&1,5&-5|0\\0&6&-10|0\end{array}\right].

Прибавим к третьей строке вторую, умноженную на 4:

\left[\begin{array}{ccc}1&-1,5&1|0\\0&1,5&-5|0\\0&0&-30|0\end{array}\right].

Таким образом:

x_1-1,5x_2+x_3=0\\1,5x_2-5x_3=0\\-30x_3=0

Разделим третью строку на -30:

x_1-1,5x_2+x_3=0\\1,5x_2-5x_3=0\\x_3=0

Следовательно:

1,5x_2-5x_3=0\\\frac{3}{2} x_2=5x_3|*\frac{2}{3} \\x_2 =\frac{10}{3}x_3.\\x_1-1,5x_2+x_3=0\\x_1-\frac{3}{2} x_2+x_3=0\\x_1-\frac{3}{2} *\frac{10}{3}x_3+x_3=0\\ x_1-5x_3+x_3=0\\x_1-4x_3=0\\x_1=4x_3.

Пусть х₃=с     ⇒

x_1=4c;x_2=\frac{10}{3}c;x_3=c.\\x_1:x_2:x_3=4:\frac{10}{3} :1\\x_1:x_2:x_3=12:10 :3.

ответ: x₁:x₂:x₃=12:10:3.

0,0(0 оценок)
Ответ:
Вайсбергггг
Вайсбергггг
17.07.2020 15:34

1. Метод исключения неизвестных.

\begin{cases} x'=5x+3y \\ y'=4x+y \end{cases}

Продифференцируем первое уравнение:

x''=5x'+3y'

Подставим выражение для y':

x''=5x'+3(4x+y)

x''=5x'+12x+3y

Из получившегося уравнения отнимем первое уравнение системы:

x''-x'=5x'+12x+3y-5x-3y

x''-6x'-7x=0

Составим характеристическое уравнение:

\lambda^2-6\lambda-7=0

\lambda_1=-1;\ \lambda_2=7

x=C_1e^{-t}+C_2e^{7t}

Найдем производную:

x'=-C_1e^{-t}+7C_2e^{7t}

Выразим из первого уравнение системы у:

y=\dfrac{1}{3} (x'-5x)

y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5(C_1e^{-t}+C_2e^{7t})}{3}

y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5C_1e^{-t}-5C_2e^{7t}}{3}

y=\dfrac{-6C_1e^{-t}+2C_2e^{7t}}{3}

y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t}

Общее решение:

\begin{cases} x=C_1e^{-t}+C_2e^{7t}\\ y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t}\end{cases}

Находим решение задачи Коши:

\begin{cases} C_1e^{-0}+C_2e^{7\cdot0t}=2\\ -2C_1e^{-0}+\dfrac{2}{3}C_2e^{7\cdot0}=-3\end{cases}

\begin{cases} C_1+C_2=2\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases}

Первое уравнение домножим на 2:

\begin{cases} 2C_1+2C_2=4\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases}

Сложим уравнения:

\dfrac{8}{3}C_2=1

C_2=\dfrac{3}{8}

Выразим C_1:

C_1=2-C_2=2-\dfrac{3}{8} =\dfrac{13}{8}

Частное решение:

\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-2\cdot \dfrac{13}{8}C_1e^{-t}+\dfrac{2}{3}\cdot \dfrac{3}{8}e^{7t}\end{cases}

\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-\dfrac{13}{4}C_1e^{-t}+\dfrac{1}{4}e^{7t}\end{cases}

2. Метод характеристических уравнений (метод Эйлера).

\begin{cases} x'=5x+3y \\ y'=4x+y \end{cases}

Матрица из коэффициентов при неизвестных:

A=\left(\begin{array}{ccc}5&3\\4&1\end{array}\right)

Характеристическая матрица:

A-kE=\left(\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right)

Характеристическое уравнение:

\left|\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right|=0

(5-k)(1-k)-3\cdot4=0

5-5k-k+k^2-12=0

k^2-6k-7=0

k_1=-1;\ k_2=7

Общее решение:

\begin{cases} x=C_1x_1+C_2x_2\\ y=C_1y_1+C_2y_2\end{cases}

Ищем фундаментальную систему решений:

x_1=p_{11}e^{k_1t}

y_1=p_{12}e^{k_1t}

x_2=p_{21}e^{k_2t}

y_2=p_{22}e^{k_2t}

Для нахождения чисел p составим систему:

\begin{cases} (5-k)p_{1}+3p_2=0 \\ 4p_1+(1-k)p_{2}=0\end{cases}

Для k=k_1=-1:

\begin{cases} 6p_{11}+3p_{12}=0 \\ 4p_{11}+2p_{12}=0\end{cases}

Оба уравнения дают:

2p_{11}+p_{12}=0

p_{12}=-2p_{11}

Найдем ненулевое решение. Пусть p_{11}=1. Тогда p_{12}=-2.

Для k=k_2=7:

\begin{cases} -2p_{21}+3p_{22}=0 \\ 4p_{21}-6p_{22}=0\end{cases}

Оба уравнения дают:

2p_{21}-3p_{22}=0

p_{21}=\dfrac{3}{2} p_{22}

Найдем ненулевое решение. Пусть p_{22}=1. Тогда p_{21}=\dfrac{3}{2}.

Фундаментальная система решений найдена:

x_1=e^{-t}

y_1=-2e^{-t}

x_2=\dfrac{3}{2}e^{7t}

y_2= e^{7t}

Общее решение:

\begin{cases} x=C_1e^{-t}+\dfrac{3}{2}C_2e^{7t}\\ y=-2C_1e^{-t}+C_2e^{7t}\end{cases}

Находим частное решение:

\begin{cases} C_1e^{0}+\dfrac{3}{2}C_2e^{0}=2\\ -2C_1e^{0}+C_2e^{0}=-3\end{cases}

\begin{cases} C_1+\dfrac{3}{2}C_2=2\\ -2C_1+C_2=-3\end{cases}

Первое уравнение домножим на 2:

\begin{cases} 2C_1+3C_2=4\\ -2C_1+C_2=-3\end{cases}

Сложим уравнения:

4C_2=1

C_2=\dfrac{1}{4}

Выразим C_1:

C_1=2-\dfrac{3}{2}C_2=2-\dfrac{3}{2}\cdot\dfrac{1}{4}=2- \dfrac{3}{8} = \dfrac{13}{8}

Частное решение:

\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{2}\cdot\dfrac{1}{4}e^{7t}\\ y=-2\cdot\dfrac{13}{8}e^{-t}+\dfrac{1}{4}e^{7t}\end{cases}

\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-\dfrac{13}{4}e^{-t}+\dfrac{1}{4}e^{7t}\end{cases}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота