В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
manafin1
manafin1
30.07.2021 00:01 •  Математика

Для покриття підлоги будуть використовувати плитку, що має форму
рівнобічної трапеції, основи якої дорівнюють 20 см і 40 см, а кут при
більшій основі дорівнює 45. запропонуйте свої варіанти покриття підлоги
даною плиткою для кімнати, підлога якої є прямокутником розміром
6  10 м (деякі плитки можна розрізати на частини). іть будь ласка

Показать ответ
Ответ:
Zeka211
Zeka211
22.04.2020 08:42
Бегать по кухне и орать во весь голос "ПОЖАР" Если ты эмоциональный
Откроешь кран и подставив ладонь под струю отрегулируешь её так что бы она попала на шторы и потушишь их если ты спокойный ( ещё их сорвать желательно как нибудь ), ну или пойдёшь и возьмёшь огнетушитель если такой имеется на даче, если ты спокойный.
И вообще ответный вопрос: А как ты проморгал то что работает плита и какова вероятность то что штора лежала так долго на плите что загорелась(ветер же мог её и обратно сдуть или просто с плиты сдуть)
0,0(0 оценок)
Ответ:
13326
13326
09.09.2020 04:13

    \log_2 \Big ( a^2x^3 - 5a^2x^2 + \sqrt{6-x} \Big ) = \log_{a^2+2} \Big (3 - \sqrt{x-1} \Big )

Раз некоторое число x удовлетворяет уравнению при любом a, то оно также удовлетворяет уравнению при a=0.

То есть, если мы подставим в уравнение a=0, то выполнится равенство:

    \displaystyle \log_2 \Big (\sqrt{6-x} \Big ) = \log_{2} \Big ( 3 - \sqrt{x-1} \Big ) \\\\\sqrt{6-x}= 3 - \sqrt{x-1} \\\\6-x = 9 - 6 \sqrt{x-1} + (x-1) \\\\6 \sqrt{x-1} = 2 + 2x \\\\3 \sqrt{x-1} = x+1 \\\\9x - 9 = x^2 + 2x + 1 \\\\x^2 - 7x + 10 = 0 \\\\ \left[\begin{array}{ccc}x_1=2 \\ x_2 = 5 \end {array} \right

Оба корня удовлетворяют уравнению и ОДЗ (при a=0): с обеих сторон в первом случае получается 1, а во втором 0 (так как мы не выписывали ОДЗ, то мы могли получить "лишние корни", но мы их не получили).

Очевидно, что эти два корня в ответ так сразу не пойдут. Мы знаем лишь только, что они подходят при a=0. И если ответ на задачу существует, то он может быть только 2, 5 или и 2, и 5. Но про другие значения a мы пока ничего не знаем.

Посмотрим, что у нас будет получаться при x=2:

    \displaystyle \log_2 \Big (8a^2 - 20a^2 + \sqrt{6-2} \Big ) = \log_{a^2+2} \Big ( 3 - \sqrt{2-1} \Big ) \\\\\log_2 \Big (-12a^2 + 2 \Big ) = \log_{a^2+2} 2

Вот только первый логарифм не всегда существует. -12a^2+2 может быть отрицательным (возьмите, к примеру, a=100). А подлогарифмическое выражение обязано быть положительным. Значит, такой x нас не устраивает.

Теперь проверим x=5:

    \displaystyle \log_2 \Big (125a^2 - 125a^2 + \sqrt{6-5} \Big ) = \log_{a^2+2} \Big ( 3 - \sqrt{5-1} \Big ) \\\\ \log_2 1 = \log_{a^2+2} 1

В обеих частях мы получили 0 (так как \log _z1 = 0, если 1\neq z0). Также a^2 + 2 \geq 2, поэтому все ограничения будут выполняться.

В итоге имеем нужный ответ: x=5.

Задача решена!

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота