Доказать, что множество всех геометрических векторов, удовлетворяющих условию [a,x]=0, где а=(-1,3,-4), является линейным подпространством в пространстве V3. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.
cosx=0 или
x= , n∈Z или cosx=1, x=2πm, m∈Z или cosx= - 1/2. x=, t∈Z или x= - , k∈z
отбор корней можно производить по тригонометрической окружности (быстрее) или с неравенства (формально - нагляднее)
- 2π≤ ≤ - π поделим все части неравенства на π, получим,
- 2≤1/2+n≤ - 1, прибавим ко всем частям неравенства - 1/2.
-2,5≤n≤- 1.5, т.к. n∈Z, то n= - 2, подставляем полученное значение n=-2, x=
Аналогично находим m= - 1, х= - 2π
t= - 1, x= -
для k таких значений не существует.
ответ: - 2π, ,
Обозначим катеты треугольника АВС как: АС=b, ВС=а, а гипотенуза равна по условию АВ=АД+ДВ=13.
Составим систему уравнений, опираясь на теорему Пифагора:
b^2+a^2=169
b^2-81=a^2-16 (Это равенство получается из того, что левая и правые части равны CД^2)
b^2=117
Найдем СД.
СД^2=b^2-81=117-81=36 => СД=6