7x+3\ \textgreater \ 5(x-4)+1
7x+3\ \textgreater \ 5x-20+1
7x-5x\ \textgreater \ -19-3
2x\ \textgreater \ -22
x\ \textgreater \ -11
2. 2 x^{2} +13x-7\ \textgreater \ 0
D=169+56=225
x_1= \frac{-13+15}{2*2} =0,5; x_2=\frac{-13-15}{2*2} =-7
x∈(-∞;-7)∪(0,5;+∞)
3. 2(1-x) \geq 5x(3x+2)
2-2x \geq 15 x^{2} +10x
2-2x-15 x^{2} -10x \geq 0
-15 x^{2} -12x+2 \geq 0
D=(-12)^2-4*(-15)*2=144+120=264
x_1= \frac{12+2 \sqrt{66} }{-30}= -\frac{6+ \sqrt{66} }{15} ; x_= \frac{12-2 \sqrt{66} }{-30}= -\frac{6- \sqrt{66} }{15}
x∈[-\frac{6+ \sqrt{66} }{15}; -\frac{6- \sqrt{66} }{15} ]
4. 3 x^{2} +5x-8 \geq 0
D=25-4*3*(-8)=25+96=121
x_1= \frac{-5+11}{2*3} =1; x_2= \frac{-5-11}{2*3} =- \frac{8}{3}
x∈(-∞;-8/3]∪[1;+∞)
4.
4x ² -16y ² при условии 2x-4y=1, 2x+4y=8.
2x-4y=1
2x+4y=8
2х=1+4у
1+4у+4у=8
1+8у=8
8у=7
у=7/8
2*х=1+4*(7/8)
2х=1+3,5
2х=4,5
х=2,25
4*2,25²-16*(7/8)² = 4*5,0625 - 16* (49/64) = 20,25 - 49/4 = 20,25-12,25 = 8
5.
x ² - 6xy + 9y ² при условии, что x+3y=3, x-3y=-1.
(х-3у)²
x+3y=3
x-3y=-1
х=3-3у
3-3у-3у=-1
3-6у=-1
-6у=-4
у=4/6
у=2/3
х=3-3*(2/3) = 1
(х-3у)² = (1-3*2/3)² = (1-2)² = -1² = 1
6.
16a ² -24ab+9b ² -4a+3b ² при условии 4a=3b
16a ² -24ab+9b ² -4a+3b ² = 16а²-24аb+12b² -4a= 4*(4a²-6ab+3b²-a)
4a=3b ⇒ a= 3b/4
4*(4a²-6ab+3b²-a) =
= 4*(4*(3b/4)²-6*(3b/4)*b+3b²-(3b/4)) =
= 4*(4*(9b²/16)-(3*3b²/2) +3b² - (3b/4)) =
= 4*(9b²/4 - 9b²/2 + 3b² - 3b/4) =
= 9b² - 18b² + 12b² - 3b = 3b²-3b = 3b(b-1)
7x+3\ \textgreater \ 5(x-4)+1
7x+3\ \textgreater \ 5x-20+1
7x-5x\ \textgreater \ -19-3
2x\ \textgreater \ -22
x\ \textgreater \ -11
2. 2 x^{2} +13x-7\ \textgreater \ 0
D=169+56=225
x_1= \frac{-13+15}{2*2} =0,5; x_2=\frac{-13-15}{2*2} =-7
x∈(-∞;-7)∪(0,5;+∞)
3. 2(1-x) \geq 5x(3x+2)
2-2x \geq 15 x^{2} +10x
2-2x-15 x^{2} -10x \geq 0
-15 x^{2} -12x+2 \geq 0
D=(-12)^2-4*(-15)*2=144+120=264
x_1= \frac{12+2 \sqrt{66} }{-30}= -\frac{6+ \sqrt{66} }{15} ; x_= \frac{12-2 \sqrt{66} }{-30}= -\frac{6- \sqrt{66} }{15}
x∈[-\frac{6+ \sqrt{66} }{15}; -\frac{6- \sqrt{66} }{15} ]
4. 3 x^{2} +5x-8 \geq 0
D=25-4*3*(-8)=25+96=121
x_1= \frac{-5+11}{2*3} =1; x_2= \frac{-5-11}{2*3} =- \frac{8}{3}
x∈(-∞;-8/3]∪[1;+∞)
4.
4x ² -16y ² при условии 2x-4y=1, 2x+4y=8.
2x-4y=1
2x+4y=8
2х=1+4у
1+4у+4у=8
1+8у=8
8у=7
у=7/8
2*х=1+4*(7/8)
2х=1+3,5
2х=4,5
х=2,25
4*2,25²-16*(7/8)² = 4*5,0625 - 16* (49/64) = 20,25 - 49/4 = 20,25-12,25 = 8
5.
x ² - 6xy + 9y ² при условии, что x+3y=3, x-3y=-1.
(х-3у)²
x+3y=3
x-3y=-1
х=3-3у
3-3у-3у=-1
3-6у=-1
-6у=-4
у=4/6
у=2/3
х=3-3*(2/3) = 1
(х-3у)² = (1-3*2/3)² = (1-2)² = -1² = 1
6.
16a ² -24ab+9b ² -4a+3b ² при условии 4a=3b
16a ² -24ab+9b ² -4a+3b ² = 16а²-24аb+12b² -4a= 4*(4a²-6ab+3b²-a)
4a=3b ⇒ a= 3b/4
4*(4a²-6ab+3b²-a) =
= 4*(4*(3b/4)²-6*(3b/4)*b+3b²-(3b/4)) =
= 4*(4*(9b²/16)-(3*3b²/2) +3b² - (3b/4)) =
= 4*(9b²/4 - 9b²/2 + 3b² - 3b/4) =
= 9b² - 18b² + 12b² - 3b = 3b²-3b = 3b(b-1)