ответэлементами множеств а, p, q являются натуральные числа, причём p = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}, q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}. известно, что выражение
((x ∈ p) → (x ∈ a)) ∨ (¬(x ∈ a) → ¬(x ∈ q))
истинно ( т. е. принимает значение 1) при любом значении переменной х. определите наименьшее возможное значение суммы элементов множества a.
пояснение.
раскроем две импликации. получим:
(¬(x ∈ p) ∨ (x ∈ a)) ∨ ((x ∈ a) ∨ ¬(x ∈ q))
:
(¬(x ∈ p) ∨ (x ∈ a) ∨ ¬(x ∈ q))
¬(x ∈ p) ∨ ¬(x ∈ q) 0, только когда число лежит в обоих множествах. значит, чтобы все выражение было истинно, нужно все числа, лежащие в p и q, занести в а. такие числа 3, 9, 15 и 21. их сумма 48.
Пошаговое объяснение:
1зд
1.Если число делится на 3, то сумма его цифр делится на 3
2.Если сумма цифр числа делится на 9, то то это число кратно 9
3.Натуральное число не делится на 2, если его последняя цифра-нечетное число
4.На 10 делятся числа, у которых последняя цифра это 0
5.Число 24 681 на 3 , так как сумма его цифр равна 21 и на 3 делится
6. Делителем любого натурального числа являетсяединица и само это число 2 зд
г) 100 и 9 3зд
(15;18)=90; НОК
(20;24)=120; НОК
(26;39)=156 НОД(15;18)=3; НОД(20;24)=4; НОД(26;39)=13
ответэлементами множеств а, p, q являются натуральные числа, причём p = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}, q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}. известно, что выражение
((x ∈ p) → (x ∈ a)) ∨ (¬(x ∈ a) → ¬(x ∈ q))
истинно ( т. е. принимает значение 1) при любом значении переменной х. определите наименьшее возможное значение суммы элементов множества a.
пояснение.
раскроем две импликации. получим:
(¬(x ∈ p) ∨ (x ∈ a)) ∨ ((x ∈ a) ∨ ¬(x ∈ q))
:
(¬(x ∈ p) ∨ (x ∈ a) ∨ ¬(x ∈ q))
¬(x ∈ p) ∨ ¬(x ∈ q) 0, только когда число лежит в обоих множествах. значит, чтобы все выражение было истинно, нужно все числа, лежащие в p и q, занести в а. такие числа 3, 9, 15 и 21. их сумма 48.
ответ: 48
пошаговое объяснение: