2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
1)12,6*0,3=3,78(км) - проедет за 0,3 часа 1й велосипедист; 2)13,8*0,3=4,14(км) - проедет за 0,3 часа 2й велосипедист; 3)4,14-3,78=0,36(км) - увеличится разрыв 4)0,36+0,52=0,88км было расстояние 0,3ч назад ответ:0,88км
1)4,7*0,5=2,35км пройдет первый 2)3,9*0,5=1,95км пройдет второй 3)2,35-1,95=0,4км увеличится разрыв 4)4,1+0,4=4,5км было расстояние между ними 0,5ч назад ответ 4,5км
Пошаговое объяснение:
2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
m = 8
n = 19
Искомая вероятность: P = m/n = 8/19
1)4,7*0,5=2,35км пройдет первый
2)3,9*0,5=1,95км пройдет второй
3)2,35-1,95=0,4км увеличится разрыв
4)4,1+0,4=4,5км было расстояние между ними 0,5ч назад
ответ 4,5км