Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. 1 января 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 1,4 млн золотых, а процент, который дракон согласился отдавать, был равен 6% в год от суммы оценки, срок договора определили немалый — 52 лет (год). Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца.
Смогут ли мастера купить досок в июле 20952 года на сумму 62 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)
>9
В решении.
Пошаговое объяснение:
1) Определите коэффициенты квадратного уравнения :
а) 6х² – х + 4 = 0. a = 6; b = -1; c = 4;
б) 12х - х² + 7 = 0, a = 12; b = -1; c = 7;
в) 8 + 5х² = 0, a = 5; b = 0; c = 8;
г) х – 6х² = 0, a = -6; b = 1; c = 0;
д) - х + х² = 152 , a = 1; b = -1; c = -152;
е) 2х² - 5х – 3 = 0 a = 2; b = -5; c = -3.
2) Решить, используя формулы квадратного уравнения :
1) 3х² + 4х + 1 = 0;
D=b²-4ac = 16 - 12 = 4 √D= 2
х₁=(-b-√D)/2a
х₁=(-4-2)/6
х₁= -6/6
х₁= -1;
х₂=(-b+√D)/2a
х₂=(-4+2)/6
х₂= -2/6
х₂= -1/3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 5х² - 4х – 9 = 0;
D=b²-4ac = 16 + 180 = 196 √D= 14
х₁=(-b-√D)/2a
х₁=(4-14)/10
х₁= -10/10
х₁= -1;
х₂=(-b+√D)/2a
х₂=(4+14)/10
х₂=18/10
х₂=1,8.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) 6х² + 37х + 6 = 0
D=b²-4ac = 1369 - 144 = 1225 √D= 35
х₁=(-b-√D)/2a
х₁=(-37-35)/12
х₁= -72/12
х₁= = -6;
х₂=(-b+√D)/2a
х₂=(-37+35)/12
х₂= -2/12
х₂= -1/6.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
ответ: 6минут или 0,1 часа.
Пошаговое объяснение:
Вторая труба заполняет бассейн за:
12*3/2=18 минут.
Производительность первой трубы N=A/t=1/12. (это работа в единицу времени) ; A=1.
Производительность второй трубы: N=A/t=1/18.
Если две трубы будут работать одновременно: N=
=1/12+1/18=5/36. (производительность двух труб)
Найдем время заполнения бассейна при работе двух труб.
t=A/N=1: 5/36=36/5 минут, за это время заполняется весь бассейн.
А нам надо 5/6 части.
Составим пропорцию.
36/5 мин. - это 1 часть
х минут - это 5/6 части
х=36/5*5/6=6 минут.